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Overview

* Previous work: Classical Hamiltonian mechanics has been widely
used in ML via Hamiltonian Monte Carlo in applications with pre-
determined force fields

* Motivation of this work: Design force fields for Hamiltonian ODEs
for the purpose of generative modeling

Contributions

* (1) Hamiltonian Score Matching (HSM): learn score functions via
Hamiltonian trajectories

* (2) Hamiltonian Generative Flows (HGFs): a generative model
framework building on Hamiltonian velocity predictors



Background: Score Matching and Hamiltonian
Dynamics

Score Matching: Hamiltonian: Energy of system

Given data distribution 71 1 9

score is defined as H(ZU, U) — U(ZU) + 5 H’UH
V log n Potential energy Kinetic energy

. . (neg log-likelihood  (neg log-likelihood
Score MatChlng (SM) alms of data) of Gaussian)

to learn score.

Previous methods:
_ Denoising SM (= x(t) —’v(t)) =(v(t), =VU(z(1)))
- Implicit SM =(v(t), Vlog m(z(t)))

Score function

Hamiltonian dynamics

Can we use the connection between Hamiltonian dyn. and score function to learn

score functions from data?



Characterize Score via Hamiltonian Dynamics

 Given data distribution 71, define Boltzmann-Gibbs distribution:
e =T QRQN(0,13), wpa(z,v)=exp(—H(z,v))/Z = w(x)N (v;0,1y)
« Hamiltonian dynamics preserve Boltzmann-Gibbs distribution -
this is used in Hamiltonian Monte Carlo.
* ldea: Can we use this fact to uniquely characterize the score

function? Theorem 1. Let T' > 0 and Fy(z) a force field. Let Il = g = m @ N(0,14). The following

statements are equivalent:

I. Score vector field: The force field F equals the score, i.e. Fy(x) = V,logn(x) for
w-almost every © € RY,

2. Preservation of Boltzmann-Gibbs: The PH-ODE with Fy preserves the Boltzmann-Gibbs
distribution mpc.

3. Conditional velocity is zero: The velocity given the location after running the PH-ODE with
Fy is zero if starting conditions z = (xq, vo) are sampled from T gc:

z~mpe = E[l(2)|2l(2)] =0 forall0<t<T (13)

Idea: Use characterization of score via velocity predictors for score matching



Hamiltonian Score Discrepancy

Define LOss (416, 1) ~E.nry, [[Vala!: O — 2Vs(a, 7]
. Squared norm of Similarity to
predicted velocity actual velocity

Loss at optimal velocity:

Dpsm (8¢, 7) := — mint Lagn (8]0, ¢) = Ezrmpe [IIE[vf |22]]1%]

Qbe I We want this to be
Zero

Theorem: Minimization of the HSD results in learning the score:

0* = arg min Dy, (0|7) = sg» = Vlogm
7



Hamiltonian Score Matching

Minimize Hamiltonian Score Discrepancy by jointly training velocity
predictor and score network
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(a) Density ()

(b) Learnt score Fy

Vectors closely approximate
gradient of log-likelihood

(c) Learnt velocity predictor Vy

Optimal velocity is close to
zero everywhere



Hamiltonian Generative Flows

Idea: Can we use Hamiltonian velocity predictors also for
suboptimal force fields?
Yes, by simulating a CNF with the optimal velocity predictor

backwards in time:

L ~ 7T %.’L‘(t) = Vg« (z,t) = z(0) ~ 7

Resulting generative model is similar to FM and diffusion.

2 design choices: 2 requirements:
-  Force field - Simulation of dynamics with
_ Coupling of distribution over force field have to be efficient

phase space (x,v) - Tractable distribution at T>0



Example of Hamiltonian Generative Flows - 1

* Diffusion Models: zero force field, independent coupling of location
and velocity.

* (CondOT) Flow Matching: zero force field, coupled velocity and
location.

* Oscillation HGFs: force field corresponding to simple pendulum
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phase space

xo ~ 7(z)
e ~N(0,I)

V=€—T T

T = €

xpr = x9 + Tvg

vp = g Ur =€—=

(a) Diffusion (b) Flow matching (¢) Oscillation HGFs.



Example of HGFs — 2: Reflection HGFs

Data Velocity

Idea: Particles move freely in a box with
reflection ("infinite force") at walls

Convergence: Distribution of particles will
converge towards a uniform distribution

Training can be done simulation-free.

t= 3.00 t= 2.25 t=1.50 t=0.75 t= 0.00

Data distribution

Uniform distribution
(max entropy)



Results
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( 1 ) Va l.| d ate d H S D as a hove l Figure 4: Image generation examples based on Oscillation HGFs for FFHQ.
metric and HSM as a novel .
) Table 1: Sample quality (FID) and number of func-
score matching method tion evaluation (NFE).
. METHOD FID |  NFE |
(2) AC h IEVE d near S OTA resu l'tS CIFAR-10 (unconditional)-32x32
1 1 1 StyleGAN2-ADA [27] 2.92 1
: : LSGM [47] 2.10 147
Image generatlo N PEGM [50] 2.48 104
VE-SDE [45] 3.77 35
VP-SDE [45] 3.01 35
EDM [26] 1.98 35
2 1 B0 [V (2, 8)1] : ) o Domteamasoo . . FM-OT (BNS) [40] 2.73 8
30 051 i s o HSM (sima=0.0) a Oscillation HGF (ours) 2.12 35
£ 2 041 / L e, CIFAR-10 (class conditional)-32x32
i fos o . VE-SDE [45] 3.11 35
h 02 < \ VP-SDE [45] 2.48 35
. ) / EDM [26] 1.79 35
: Lnen(8,) = 2t”’Lg.m<6;fr)| Oscillation HGF (ours) 1.97 35
; T % = e T FFHQ (unconditional)-64x64
Legm(0; ) Timet 0.0 0.1 °2 Mean %3 04 0.5 VE_SDE [45] 25 . 95 79
(a) ESM loss vs HSD for net- (b) Empirical HSD vs. Taylor ap- (c) Std vs absolute mean of deriva- ~ VP-SDE [45] 3.39 79
works trained for 1 epoch proximation (see Proposition 2) tive of param. of score network. EDM [26] 2.39 79

Oscillation HGF (ours) 2.86 79
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Visit us at our poster session!
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