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Diffusion models enable surprisingly good reconstruction from the brain!
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Ozcelik, Furkan, and Rufin VanRullen. "Natural scene reconstruction from fMRI signals using generative latent diffusion." Scientific Reports 13.1 (2023): 15666.
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ABSTRACT

In neural decoding research, one of the most intriguing topics is the reconstruction of perceived natural images based on
fMRI signals. Previous studies have succeeded in re-creating different aspects of the visuals, such as low-level properties
(shape, texture, layout) or high-level features (category of objects, descriptive semantics of scenes) but have typically failed to
reconstruct these properties together for complex scene images. Generative Al has recently made a leap forward with latent
diffusion models capable of generating high-complexity images. Here, we investigate how to take advantage of this innovative
technology for brain decoding. We present a two-stage scene reconstruction framework called “Brain-Diffuser”. In the first stage,
starting from fMRI signals, we reconstruct images that capture low-level properties and overall layout using a VDVAE (Very
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According to image similarity metrics, the images keep getting
better and better...

But are we really getting better at the brain or just getting
better at image generation?



BrainBits: Insert an information bottleneck in the
reconstruction pipeline.

How much information is needed to get the reconstructions
we’re seeing?

This is a general method that could be applied to any stimuli
reconstruction task from neural data.



Finding 1: We can restrict the information available at
reconstruction time to a great degree and still get “good looking”
images
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How good?

Finding 2: According to existing metrics, reconstruction performance
quickly plateaus
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What does this mean?

The message: if we care about studying visual processing in the brain,
we need to measure signal extracted, not image quality
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What information do bottlenecks contain?

Edge energy, brightness and contrast are mostly exhausted early.
Larger bottlenecks are needed to extract more object class information

above chance.
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What areas of the brain help reconstruction the most?

Models quickly zoom in on useful areas even at low bottleneck sizes.

As the bottleneck size goes up models exploit those original areas but
do not meaningfully expand to new area
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heck out our poster at NeurlPS 2024!

Paper: https://arxiv.org/abs/2411.02783
Github: https://qithub.com/czlwang/BrainBits
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A new metric to measure decoding vs priors Stimuli Reconstructions with Bottlenecks ! What brain areas are used for reconstruction?
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images of seemingly great quality

+ How much of that is due to the image prior of the image generator
and how much of that is due to the brain?

+ We need a metric that can disentangle the issue!
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Only a few brain bits are needed to achieve most of the
reconstruction performance!
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Effective dimentionality
Effective dim. of vision bottlenecks Effective dim. of language bottlenecks
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Practical applications and future work
+ Can we further interpret the bottleneck? What if we constrained the
bottleneck to use a symbols from a fixed alphabet?
+ How should new feature extractors from neural data be constructed?

RMS Contrast Average Gradient Magnitued
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