
Banded Square Root Matrix Factorization for
Differentially Private Model Training

Nikita Kalinin∗, Christoph Lampert∗

∗Institute of Science and Technology Austria

9 November 2024 arXiv:2405.13763



Background Main Results Conclusion

Introduction to Differential Privacy

(ε, δ)-Differential Privacy
A mechanism M for a randomized algorithm is said to provide (ε, δ)-differential
privacy if, for all data sets D and D ′ that differ in one element, and for all
subsets of the algorithm’s output space S:

Pr[M(D) ∈ S] ≤ eε · Pr[M(D ′) ∈ S] + δ

Dwork, Cynthia. 2006 Differential privacy.



Background Main Results Conclusion

SGD with Momentum and Weight Decay

SGD with Momentum and Weight Decay
Training a model by SGD with Momentum 0 ≤ β < 1 and Weight Decay
0 < α ≤ 1 has the following gradient updates:

θi = αθi−1 − ηmi for mi = βmi−1 + xi

where x1, . . . , xn are the update vectors, η > 0 is the learning rate.

Unrolling the recursion, we obtain an expression for θi as a linear combination
of gradients as

θi = −η

i∑
j=1

xj

( i∑
k=j

αi−kβk−j
)
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SGD with Momentum and Weight Decay

Workload Matrix
Denote the stacked gradient vectors as X . Then, the intermediate model
weights Θ can be represented as:

Θ = −ηAα,βX .

Here, X is a private matrix and Aα,β is a public matrix, explicitly defined as:

Aα,β =


1 0 0 . . . 0

α+ β 1 0 . . . 0
α2 + αβ + β2 α+ β 1 . . . 0

...
...

. . . . . .
...∑n−1

i=0 αiβn−1−i ∑n−2
i=0 αiβn−2−i . . . α+ β 1

 .

We need to solve the problem of DP Matrix Multiplication!
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Matrix Factorization

Matrix Factorization
We compute the product of a public matrix A and private vectors X in a DP
way. By factorizing the matrix A = BC to privately estimate the quantity AX
as

ÂX = B(CX + Z) = A(X + C−1Z),

where carefully chosen Gaussian noise Z ensures that the sum CX + Z is a
private estimate of CX , which is post-processed by the matrix B.

Matrix Factorization Error
We quantify the MF error E(B,C) by the following identity:

E(B,C) =

√
EZ‖ÂX − AX‖2

F/n

C. Li, G. Miklau, M. Hay, A. McGregor, and V. Rastogi. The matrix mechanism: Optimizing linear
counting queries under Differential Privacy. VLDB, 2015.
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Multi Epoch Training

b-min-separation
We allow users to participate in a training process multiple times with a
restriction on the time gap between two consecutive participations:

x1 x2 . . . xi . . . xj . . . xn

userk

≥ b ≥ b

C. A. Choquette-Choo, A. Ganesh, M. H. B. McKenna, R., J. K. Rush, A. G. Thakurta, and X.
Zheng. (Amplified) banded matrix factorization: A unified approach to private training. In

Conference on Neural Information Processing Systems (NeurIPS), 2023.
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Approximately Optimal Factorization

Approximately Optimal Factorization
For a workload matrix A we solve optimization problem

arg min
S∈Sn

+

tr [ATA S−1] subject to diag(S) = 1 and S[i,j] = 0 for |i − j| ≥ b.

Then, C>C = S and B = AC−1.

C. A. Choquette-Choo, A. Ganesh, M. H. B. McKenna, R., J. K. Rush, A. G. Thakurta, and X.
Zheng. (Amplified) banded matrix factorization: A unified approach to private training. In

Conference on Neural Information Processing Systems (NeurIPS), 2023.
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Banded Square Root

Lemma (Banded Square-Root Decomposition for Regularized SGD with
Momentum)

Let Aα,β ∈ Rn×n be the workload matrix. Then Aα,β = B|p|
α,βC |p|

α,β for

C |p|
α,β =



1 0 . . . 0 0 . . . 0
c1 1 . . . 0 0 . . . 0
...

...
. . .

...
...

. . .
...

0 cp−1 . . . 1 0 . . . 0
0 0 . . . c1 1 . . . 0
...

...
. . .

...
...

. . .
...

0 0 . . . 0 cp−1 . . . 1


,

for ck =
k∑

i=0
αk−i rk−i riβ

i with coefficients rk =
∣∣∣(−1/2

k
)∣∣∣. Where Aα,β = (C |n|

α,β)
2.
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Matrix Factorization Error

Theorem (Factorization Error in the Setting of Multi Participation)

Setting of Multi Participation] Let A1,β ∈ Rn×n be the workload matrix of SGD
with momentum 0 ≤ β < 1. Then, for any b ∈ {1, . . . , n} it holds that

E(B|p|
1,β ,C

|p|
1,β) = Oβ

(√
kn log p

p

)
+ Oβ,p

(√
k
)

where k ≤ d n
b e is the number of participations and p ≤ b.
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Matrix Factorization Numerical Experiments
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Matrix Factorization Mechanism for DP Model Training
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Summary

Summary

1 Propose Banded Square Root Factorization
2 Derive an explicit and efficient SGDM factorization
3 Analyze sensitivity for decreasing Lower Triangular Toeplitz Matrices
4 Establish upper and lower bounds on matrix factorization error for both

multiple and single participation
5 Compare numerically with approximately optimal factorization
6 Train a CIFAR-10 model using the Banded Square Root MF mechanism
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