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The Gist

* Decode faster from autoregressive LLMs: 2X — 3X.
» Lossless quality of generation: no changes on the target model.

 Integrates with Medusa! for faster results.

1. Cai, Tianle, et al. "Medusa: Simple LLM Inference Acceleration Framework with Multiple Decoding Heads." Forty-first International Conference on Machine Learning
» Here, neural rescoring firstly refines the block draft, and then tree-attention is applied over the refined block drafft.



What is Blockwise Parallel Language Model...

 Blockwise parallel LM
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manner with a set of prediction heads.

» Use Blockwise Parallel Decoding (BPD)

Blockwise Parallel
Language Model

« Acceleration of text generation. Autoregressive

Language Model

» Ancestor of speculative decoding.

(1) Block draft (2) Verify (3) Accept

[ Prompt H _‘ Q: Who is the best soccer player in the world? \n A: ]

« The more coherent block, the higher acceptance

rate. Thus, faster generation.



For Blockwise Parallel Language Models...

« Memory-bound scenario.

« Can we somehow gain more from the block?
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Autoregressive Blockwise Parallel
Language Model Language Model

[ Prompt | p-O{ _’ Q: Who is the best soccer player in the world? \n A:




Observation

» Some tokens in the block are (1) repetitive or (2) incoherent (e.g., Lionel Ronaldo).

A blockwise parallel LM produces drafts where 20.0-75.5% of consecutive tokens

are repeated.



Observation

* Thought
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Observation

e Thought

2. Rescore the lattice using an autoregressive models to improve the draft.
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Contribution

« Use of small language models for draft refinement.

 Accelerating BPD with refined block by increasing acceptance rate.



Rescoring Methods

* (Local) Neural Rescoring
» Greedily rescore the lattice with (61M parameter) decoder-only transformer

* Pros: Ensure local fluency / Cons: Latency scales with the number of draft tokens.
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Rescoring Methods

* (Global) N-gram Rescoring
 Greedily rescore the lattice with C4-trained n-gram model (~100M subword n-grams)

 Pros: Extract and rescore multiple drafts quickly / Cons: Model itself is weak.
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* Block efficiency represents the average number of tokens decoded per

serial call.

 Simple rescoring works well on 1.5B LM, but depends on the task.

Baseline Local rescoring Global rescoring s
fask Pt BPD | neura-6IMBPD | 4-gramBPD | 16-bestO-gram BPD | 16-best 4-gram BPD | Oracle (k=16)
LM | LAMBADA | 3.12 | 3.08(-128%)@® | 3.05(224%)@ | 323(+3.53%)@ | 3.29(+545%)e@ 3.67
QA | SQUADVI | 208 | 2.10(+096%) @ | 2.07 (-048%) @ | 218 (+485%) @ | 2.22(+6.87%) @ 245

s.suy | CNNDaily [ 174 | L73(057%) @ | 1.73(057%) @ | 182(+4.66%)® | 183 (+5.41%) @ 226
SAMSUM | 127 | 139(945%) @ | 1.29(+1.57%) @ | 137(+7.87%) @ | 1.45+14.17%) @ 1.95
MultiNews | 110 | 1.25(+13.64%) @ | L.12(+1.82%) @ | 1.13(+273%)® | 122(+10.91%) @ 1.43
L-SUM | XSUM 113 | 123(+885%) @ | 1.16(+2.65%) @ | 118 (+4.42%) @ | 1.26 (+11.50%) @ 1.55
NewsRoom | 108 | 129 (+19.44%)@ | 1.18(+9.26%) @ | 1.11(+2.78%)® | 1.31(+21.30%) ® 1.50




* [Open LLM 13B] Speedup ratio relative to the standard autoregressive
decoding on MT-Bench dataset when greedily decoding with Vicuna 13B.

 Simple neural rescoring further improves Medusa! as well as BPD on

13B LLM.
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1. Cai, Tianle, et al. "Medusa: Simple LLM Inference Acceleration Framework with Multiple Decoding Heads." Forty-first International Conference on Machine Learning
» Here, neural rescoring firstly refines the block draft, and then tree-attention is applied over the refined block drafft.
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