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Existing studies on FR primarily focuses on
constructing more discriminative face
features by developing:

1) margin-based loss functions B o O 2~ Y

Green Geller

Monica Joey

Geller Tribbiani
2) powerful network architectures k E*l
) -
Phoebe Chandler
Buffy Bing

Recently, the success of unsupervised learning and graph neural networks has demonstrated the importance
of data structure information in improving model generalization.

Considering that the FR task can leverage large-scale training data, which intrinsically contains significant
structure information. Thus, in this paper, we extend our interests on building a cutting-edge FR framework

through exploiting such powerful and substantial structure information.
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Persistent Homology (PH) is a method in computational topology used to analyze and capture the underlying topological
structure information of complex point clouds.
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Novel Findings
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We use Persistent Homology (PH) to investigate the evolution trend of structure information in existing FR
framework and illustrate 3 interesting findings:
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(i) Asthe amount of data increases, the topological structure of the input space
becomes more and more complex.
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(ii) Asthe amount of data increases, the topological structure discrepancy between the input
space and the latent space becomes increasingly larger.

(iii) As the depth of the network increases, the topological structure discrepancy becomes
progressively smaller.
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Figure 2: (a): We investigate the relationship between the amount of data and the topological
structure discrepancy by employing ResNet-50 ArcFace model [1] to perform inferences on MS1MV?2
training set. Inferences are conducted for 1000 iterations with batch sizes of 256, 1024, and 2048,
respectively. Histograms are used to approximate these discrepancy distributions. (b): We investigate
the relationship between the network depth and the topological structure discrepancy by performing
inference on MSIMV?2 training set (batch size=128) using ArcFace models with different backbones.
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In FR tasks with large-scale datasets, the structure of face data will be severely destroyed during training,
which limits the generalization ability of FR models in practical application scenarios.

A fundamental idea is to align the structures of the input and latent spaces in order to maximize the
preservation of the topological structure information of face data.
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To remedy this problem, we propose a Perturbation-guided Topological Structure Alignment (PTSA) strategy
that includes two mechanisms: Random Structure Perturbation (RSP) and Invariant Structure Alignment (ISA).
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perturb the sample in order to increases the

structure diversity of the latent space. _ -
We adopt ArcFace loss as the basic classification loss
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During forward propagation, we can construct the Vietoris-Rips complexes for the original input space and the
perturbed latent space. Then we can utilize persistent homology to analyze the topological structures of two
complexes, and obtain their corresponding persistence diagrams and persistence pairing, respectively.

We choose to align the original input space with the perturbed latent space.
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Structure Damage Estimation (SDE) ¥

In practical FR scenarios, low-quality face samples, also known as "hard samples™, are commonly included in
the training set, which will disrupt the latent space’s topological structure and further hinder the alignment of

structures.

To address this issue, we propose a novel hard sample mining strategy called Structure Damage Estimation
(SDE) to identify hard samples with serious structure damage and guide them back to the reasonable

positions during optimization.

Prediction Uncertainty:

To accurately select hard samples, we propose using a Gaussian-uniform mixture (GUM) model to model
sample difficulty, which utilizes prediction entropy as the distribution variable.
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Then the posterior probability that the sample to be hard (i.e., high-uncertainty) can be computed as follows:

(1 —m)U(0,Q)

hy(T;) = Py (u; = 1|7;) = aN+(E(:)]0. %) + (1 — 7)U(0, )

Structure Damage Score (SDS):

Inspired by the Focal loss, we design a probability-aware scoring mechanism that combines prediction
uncertainty and prediction accuracy to adaptively compute SDS for each sample.

w(T;) = w1 (Ti) X wa(@;) = (1 + ho(T)) x (1 —g7")

By assigning higher scores to hard samples, the model is encouraged to focus more on learning these
challenging samples, boosting the FR system’s generalization.

Ecls — w(gz) X £arc(§‘ia yz)
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Experiments ERK

Datasets:

For training, we employ three distinct datasets, namely MS1MV2 (5.8 Mimages, 85K identities ), Glint360K
(17M images, 360K identities), and WebFace42M (42.5M facial images, 2M identities).

For evaluation, we adopt LFW, AgeDB-30, CFP-FP, CPLFW, CALFW, 1JB-C, and 1JB-B as the benchmarks to
test the performance of our models.

Backbones:

ResNet-50, ResNet-100, and ResNet-200.
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Results on LFW, CFP-FP, AgeDB-30,
1JB-B and 1JB-C:

(1) TopoFR's performance on easy benchmarks has
nearly reached saturation and is significantly
higher than that of compared methods.

(2) On 1JB-B/C, TopoFR has achieved SOTA

performance across different ResNet backbones.

Notably, our R50-based TopoFR model even
surpasses most R100-based competitors.
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Table 2: Verification accuracy (%) on LFW, CFP-FP, AgeDB-30, IJB-C and IJB-B benchmarks.

Training Data Method Venue | LFW CFP-FP AgeDB-30 | WB-C UB-B

le-5 le-4 le-4

R50, ArcFace [1] CVPRID | 99.68  97.11 9753 | 8836 9252 | 91.66

RS0, MagFace [3] CVPR2L | 99.74 9747 9770 | 8895 9334 | 91.47

RS0, AdaFace [3] CVPR22 | 99.82 9786  97.85 O 9627 | 9442

RS0, TopoFR i 99.83 9824 9823 | 9479 9642 | 95.13

R50. TopoFR : 99.83 9824 9825 | 9471 9649 | 95.14

RT00, CosFace [2] CVPRIS [99.78 9826 U817 | 9268 9556 | 94.01

R100, ArcFace [] CVPRI9 | 9977 9827 9815 | 9269 9574 | 94.09

R100, MV-Softmax [71] AAAI20 | 9980 9828  97.95 - 9520 | 93.60
R100, URL [53] CVPR20 | 99.78  98.64 - 95.00 96.60 | -

R100, BroadFace [12] ECCV20 | 99.85 9863 9838 | 9459 9638 | 94.97

MSIMV2 R100, CurricularFace [4] | CVPR20 | 99.80 9837 9832 ~ 7 96.10 | 94.80

R100, MagFace+ [5] CVPR21 | 99.83 9846 9817 | 9408 9597 | 9451

R100, SCF-ArcFace [22] | CVPR21 | 99.82 9840 9830 | 94.04 96.09 | 94.74

R100, DAM-CurricularFace [73] | ICCV21 - - - - 96.20 | 95.12

R100, ElasticFace-Cos+ [74] | CVPR22 | 9980 9873 9828 _ 9665 | 95.43

R100, AdaFace [3] CVPR22 | 99.82 9849  98.05 - 9689 | 95.67
TransFace-B [9] ICCV23 | 9982 9839 9827 |94.15 9655 | -

R100, TopoFR' i 99.85 9883 9842 | 9528 96.96 | 95.70

R100, TopoFR : 99.85 9871 98.42 | 9523 9695 | 95.70

R200, ArcFace [1] CVPRIY [99.79 9844 98.10 [ 9467 9653 | 95.18

R200, AdaFace [3] CVPR22 | 99.83 9876 9828 | 94.88 9693 | 95.71
TransFace-L 9] ICCV23 | 99.83 9865 9823 | 9455 9659 | -

R200, TopoFR' i 99.85 9909 9854 | 9519 97.12 | 95.77

R200, TopoFR : 99.85 9905 9852 |95.15 97.08 | 95.82

R50, ArcFace [1] CVPRIO | 99.78 9877 9828 | 9529 0681 ] 9530

R50, AdaFace [3] CVPR22 | 99.82 9907 9834 | 9558 9690 | 95.66

RS0, TopoFR i 99.85 9928 9847 | 9599 9727 | 9596

RT00, ArcFace [1] CVPRIO [ 9981 99.04 U831 [ 9538 9689 | 95.60

R100, AdaFace CVPR22 | 99.82 9920 9858 | 9624 97.19 | 95.87
Glint360K TransFace-B [9] ICCV23 | 9985 9917 9853 |96.18 9745 | -

R100, TopoFR i 99.85 9943 9872 | 9657 97.60 | 96.34

R200, ArcFace [1] CVPRIO (9982  99.14 9849 [95.71 9720 | 95.89

R200, AdaFace [3] CVPR22 | 99.83 9924 9861 |9596 9733 | 96.12
TransFace-L [9) ICCV23 | 9985 9932 9862 |9629 9761 | -

R200, TopoFR i 99.87 9945 9882 | 9671 97.84 | 96.56
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Code and pre-trained models are available at:

https://github.com/modelscope/facechain/tree/main/face_module/TopoFR
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