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Our work is motivated by the complexity-expressivity trade-offs:

» Develop models that can detect patterns with cycles, but run
in O(n) time on sparse graphs.

» Analyze the expressivity of the multi-layers version of the
proposed model.
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Basic definitions and ideas:

» A graph homomorphism from F' to GG is a mapping from
V(F) to V(G) that preseves their structures.

» Graph homomorphism counts vectors from a collection of
graphs F's to G and H can be used to distinguish G and H.

Our proposal:

» Specify F's collection of interest (cycles of lengths up to 6,
cliques, etc.), then enumerate all these homorphism mappings.

> Aggregate the transformed features along the mapping to get
a single homomorphism convolution layer:

hom((F*,p), (G*,2)) = > T @)

m€Hom(F*,G*) peV (F*)



I Expressivity of Deep Homomorphism Network (DHN) 4




I Expressivity of Deep Homomorphism Network (DHN)

Let P’ be a series of patterns, and (G, z), (G, ') be inputs.

Theorem 1 (Main Theorem)
DHN(x) =DHN(z') iff hom(P*, G) # hom(P*, G"), where PY is a
singleton and P’ are patterns obtained by attaching P to P*~1.



I Expressivity of Deep Homomorphism Network (DHN) 4

Let P’ be a series of patterns, and (G, z), (G, ') be inputs.

Theorem 1 (Main Theorem)
DHN(x) =DHN(z') iff hom(P*, G) # hom(P*, G"), where PY is a
singleton and P’ are patterns obtained by attaching P to P*~1.

E attach i

Pf 1 PZ

new pattern



I Expressivity of Deep Homomorphism Network (DHN) 4

Let P’ be a series of patterns, and (G, z), (G, ') be inputs.

Theorem 1 (Main Theorem)
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Stacking layers make the model exponentially expressive.

DHN is a generalization of 1-WL when P is the single-edge.
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Complexity: DHN runs in the same time complexity as
computing hom (P, G), i.e., O(n) if G is sparse and P is tree-like.
This is true for real-world applications.

Implementation: Homomorphism mappings for each unit
pattern can be precomputed and stored similar to edge list.

#params CSL EXP SR25 ENZYMES PROTEINS

MPNN (4 layers) 27k 0 0 0 546 +45 720+ 4.0
PPGN (4 layers) 96k 100 100 0 5824+ 57 772437
12-GNN (4 layers) 143k 100 100 100 - -

N2-GNN (4 layers) 355k 100 100 100 - -

DHN-(C5.4) 5k 100 50 0 643 £55 765 +3.0
DHN-(C5:5) 7k 100 81 0 63.7+54 770432
DHN-(C5:10) 27k 100 98 0 58.0 £53 785+£25
DHN-(CK3:5) 7k 100 50 53 633+ 55 76.0+27
DHN-(C5.4, C5) 8k 100 50 0 644 £59 771+28
DHN-(C3:5, Cs) 11k 100 99 0 620+ 55 77.0+25
DHN-(C5:5, C:5) 36k 100 99 0 599 £52 76.7 £33
DHN—(C5.19, C2) 27k 100 100 0 635+61 782+33
DHN-(C5 K35, C2K3:5) 36k 100 100 100 57.5+6.6 774+ 3.4




I Conclusion

Implication of our main theorem: Let k be the tree-width of
pattern P. Then DHN is:

» Strictly more expressive than 1-WL if P contains a single-edge
pattern,

» Incomparable with &-WL for k¥’ < k,
» Less expressive than k-WL

» See our manuscript for comparison with other GNN models.

Conclusion and future work:
» Stacking homomorphism layers leads to powerful models

» Future work will study how graph pooling and attention can
help realizing the potential of DHN.
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