
Gennaro Gala1 Cassio de Campos1 Antonio Vergari2 Erik Quaeghebeur1

2 University of 
Edinburgh, UK

1 Eindhoven 
University of 
Technology, NL

Scaling Continuous Latent Variable 
Models as Probabilistic Integral Circuits

TL;DR: We learn continuous 
hierarchical mixtures as DAG-shaped 
PICs, and scale them using neural 
functional sharing techniques.



• PICs are symbolic computational graphs 
over possibly non-normalized distributions,
and represent hierarchical continuous 
mixture models using input       , product       , 
sum        and integral       units.

• Non-input units take one or more functions 
as input and output a single function

• Functions are ‘attached’ to input and integral 
units only

Background – Probabilistic Integral Circuits 
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Previous work & its limitation
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[1] Gala et al. "Probabilistic integral circuits." AISTATS 2024.

• In previous work [1], PICs where (i) 
limited to tree-shaped structure and 
(ii) only used univariate dependencies 
between latent variables as to make 
training feasible

• RQ: How can we build more intricate 
structures and allow for multivariate 
latent relationships while providing 
scalable training?



We present a pipeline that 
from arbitrary variable 

decompositions (1) builds 
DAG-shaped PICs (2), that 

we train by materializing 
them as tensorized circuits 

(aka tensor networks) called 
Quadrature-PCs (QPCs) (3), 
which we also fold to allow 

fast inference (4).

A scalable pipeline to build & learn PICs
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PIC2QPC: The Tucker layer case
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• Zooming-in the QPC 
materialization, we show 
how the function      can be 
discretized via numerical 
quadrature and used to 
parameterize a Tucker layer. 

• The two gaussian blocks are 
just vectors of size 𝐾, which 
get multiplied via an outer 
product that is then matrix-
multiplied by



(1) multi-headed MLP (2) DAG-shaped PIC (3) folded CP layer

Neural functional sharing for faster & 
cheaper QPC materialization
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• Materializing QPCs is expensive when function evaluation is costly, so we present 
neural functional sharing: We parameterize all integral units with the same 
functional form and at the same depth using a multi-headed MLP.



PICs with functional 
sharing (    ) - unlike 

those w/o (    ) - need 
same resources as

PCs (   ), and use up to 
99% less params!

Neural functional sharing makes PICs scale
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• QT-CP, QG-CP, QG-TK are 
tensorized circuit architectures, 
and 𝐾 is the width of their layers.

• 𝑀 is the size of the PIC MLPs.



QPCs are performant tractable 
probabilistic models
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QPCs outperform standard PCs on distribution estimation benchmarks
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