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Model

Computation graphs

G = (V,E)
labeled, unweighted, directed and acyclic (DAG)
A node v represents an operation applied to the input data and is associated with an operation type
An edge e = (v, u) represents the flow of data or dependency among node v and node u

Device placements
Given a list D of the available devices, a placement P = {p1, p2, ..., pn} assigns each operation v of a
computation graph G to a device p ∈ D, where p ∈ {1, 2, ..., |D|}.

Problem definition
Our goal is to assign each part of a computation graph to the most suitable device, such that the
overall execution time during the inference of the model is minimized.

θ∗ = arg min
π,θ

l(G;π, θ)
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Related work

Problems of the existing approaches

Not capturing the directed interactions among nodes
Heuristics or simple methods for graph partitioning
Requiring hyperparameter tuning
Grouper- or encoder-placer architectures
End-to-end training is not allowed
Ignoring topological features

Our approach

Local and global structural features
Learning how to partition a graph
Unspecified number of groups
End-to-end learnable parameters
Personalized partitioning
Fusing encoder- and grouper-placer techniques
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Proposed framework
The architecture
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Proposed framework
Graph construction - Computation graph

Neural network model Graph construction

Heterogeneous execution

Feature extraction

Learning embeddings and groups jointly
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Each computation graph is:
labeled
unweighted
directed and acyclic (DAG)

Each node:
corresponds to an operation
has an associated operation type

Each edge:
links two nodes
represents the flow of data
or a dependency among two
operations
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Proposed framework
Feature extraction

Neural network model Graph construction

Heterogeneous execution

Feature extraction

Learning embeddings and groups jointly
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Four categories of features:
Local structural features
Global structural features
Positional features
Node-specific features

Examples of features:
in-degree and out-degree
operation type embedding
fractal dimension of nodes
positional encoding
node id or node embedding
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Proposed framework
Learning embeddings and groups jointly and device placement

Neural network model Graph construction

Heterogeneous execution

Feature extraction

Learning embeddings and groups jointly
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Learns embeddings and groups jointly
Further enrich node features
Partitions a computation graph
Unspecified number of groups
Grouper-placer and encoder-placer

Graph parsing network
Graph and node encoding
Edge score matrix calculation
Graph partitioning and pooling

Original nodes to the available devices
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Proposed framework
Heterogeneous execution

Neural network model Graph construction

Heterogeneous execution

Feature extraction

Learning embeddings and groups jointly
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Intel Server
Intel OpenVINO toolkit
Reinforcement learning
Policy learning
Inference time

REINFORCE
Reward aware of execution time
rP′(G′) = 1

lP′ (G′)

End-to-end parameter update
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Experiments
Evaluation Results

Inception-V3 ResNet BERT

lP(G) Speedup % lP(G) Speedup % lP(G) Speedup %

CPU-only 0.0128 0 0.0160 0 0.00638 0

GPU-only 0.0120 6.25 0.00781 51.2 0.00277 56.5

OpenVINO-CPU 0.0128 0 0.0234 −46.3 0.00657 −2.98

OpenVINO-GPU 0.0138 −7.81 0.00876 45.3 0.00284 55.5

Placeto 0.0116 9.38 0.00932 41.8 0.00651 −2.04

RNN-based 0.0128 0 0.00875 45.3 OOM OOM

HSDAG 0.0105 17.9 0.00766 52.1 0.00267 58.2
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Experiments
Ablation study

Inception-V3 ResNet BERT

lP(G) Speedup % lP(G) Speedup % lP(G) Speedup %

CPU-only 0.0128 0 0.0160 0 0.00638 0

Original 0.0105 17.9 0.00766 52.1 0.00267 58.2

w/o output shape 0.0117 8.59 0.00768 52.0 0.00278 56.4

w/o node ID 0.0117 8.59 0.00768 52.0 0.00279 56.4

w/o graph structural features 0.0109 14.8 0.00766 52.1 0.00268 58.2
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