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Unpaired Domain Translation: The Problem which Motivated the Study1

The task: learn (from samples) a
generalizable translation map between the

two given data domains.

Example: Style Translation

Unsupervised setup
Only unpaired train samples are given:

{x1, . . . , xN}, {y1, . . . , yM}.

1Jun-Yan Zhu et al. (2017). “Unpaired image-to-image translation using cycle-consistent adversarial networks”.
In: Proceedings of the IEEE international conference on computer vision, pp. 2223–2232.
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Schrödinger Bridge problem2

The Schrödinger Bridge problem
For two continuous distributions p0 and p1 on

RD, the Schrödinger Bridge problem is:

inf
T∈F(p0,p1)

KL(T∥Wϵ).

Here F(p0, p1) are stochastic processes with
marginals p0, p1 at t = 0 and t = 1.

Here Wϵ is a Wiener process with the variance ϵ, i.e., it
is a stochastic process with the stochastic differential
equation (SDE): dXt =

√
ϵdWt.

Figure 1: Wiener process with ϵ = 1.
2Erwin Schrödinger (1931). Über die umkehrung der naturgesetze. Verlag der Akademie der Wissenschaften in

Kommission bei Walter De Gruyter u ….
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Reciprocal3 and Markovian processes

Let F denote the set of all stochastic processes in RD for t ∈ [0, 1] with continuous trajectories
{xt}t∈[0,1]. We also denote Brownian Bridge Wϵ

|x0,x1
as the Wϵ conditioned on x0, x1 at t = 0, 1.

Reciprocal processes. Let R ⊂ F denote the subset of reciprocal processes, i.e., those
processes can be represented as mixtures of Brownian bridges:

T ∈ R ⇔ ∃π = πT ∈ P(RD × RD) s.t. T = Tπ
def=

∫
Wϵ

|x0,x1
πT(x0, x1)dx0dx1.

Markov Processes. Let M ⊂ F denote the subset of Markovian processes, i.e.,
T ∈ M ⇔ ∀N > 1, 0 ≤ t1 < · · · < tN ≤ 1 : pT(xtN |xtN−1 . . . , x1) = pT(xtN |xtN−1).

Schrödinger Bridge T∗ is the only process starting at p0 and ending at p1 that is
both Markovian and reciprocal.
3Yuyang Shi et al. (2023). “Diffusion Schrödinger Bridge Matching”. In: Thirty-seventh Conference on Neural

Information Processing Systems.
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Bridge matching

Reciprocal projection
• Defined for any process T ∈ F :

projR(T) def= argminR∈RKL(T∥R)

• Yields a mixture of Brownian bridges:∫
Wϵ

|x0,x1 πT(x0, x1)dx0dx1

Markovian projection
• Defined for a reciprocal process Tπ ∈R:

projM(Tπ) def= argminM∈MKL(Tπ∥M)

• Yields a diffusion with the SDE

dxt = gM(xt, t)dt +
√

ϵdWt, x0 ∼ p0.

Bridge matching = combination of Reciprocal and Markovian Projections
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Iterative Markovian Fitting4 (Iterative Diffusion Bridge Matching)

Alternating Markovian and Reciprocal
projections is called the Iterative

Markovian Fitting (IMF) procedure.
Starting from a reciprocal process

T0 =
∫

Wϵ
|x0,x1

dπ(x0, x1) induced by some
initial plan π(x0, x1), one performs iterative

updates

T2n+1 = projM(T2n), T2n+2 = projR(T2n+1)

{Tn}∞
n=1 converges to the SB T∗:

limn→+∞KL(Tn∥T∗) = 0.

4Yuyang Shi et al. (2023). “Diffusion Schrödinger Bridge Matching”. In: Thirty-seventh Conference on Neural
Information Processing Systems.
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Issues with IMF

Learning continuous-time SDEs in IMF is non-trivial and, unfortunately, leads to long
inference due to the necessity to use many steps of numerical solvers. In the DSBM method5

the number of sampling steps is 100, which is a lot.

5Yuyang Shi et al. (2023). “Diffusion Schrödinger Bridge Matching”. In: Thirty-seventh Conference on Neural
Information Processing Systems.

6



Our contributions

This paper addresses the above-mentioned limitation of the existing IMF framework by
introducing a novel approach to learn the Schrödinger Bridge:

1. Theory I. We introduce a Discrete Iterative Markovian Fitting (D-IMF) procedure, which
innovatively applies discrete Markovian projection to solve the SB problem without relying
on SDE.

2. Theory II. We derive closed-form update formulas for the D-IMF procedure when dealing
with high-dimensional Gaussian distributions.

3. Practice. For general data distributions available by samples, we propose an algorithm
(ASBM) to implement the discrete Markovian projection and our D-IMF procedure in
practice. Our algorithm is based on adversarial learning and DDGAN. Our learned SB
model uses just 4 evaluation steps for inference instead of hundreds of the basic IMF.
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Discrete Markovian and reciprocal stochastic processes

We define the discrete reciprocal processes using the finite-time projection of Wϵ
|x0,x1

:
pWϵ(xt1 , . . . , xtN |x0, x1) =

∏N
n=1 pWϵ(xtn |xtn−1 , x1),

pWϵ(xtn |xtn−1 , x1) = N
(

xtn |xtn−1 + tn−tn−1
1−tn−1

(x1 − xtn−1), ϵ (tn−tn−1)(1−tn)
1−tn−1

)
.

We introduce the reciprocal projection projR(q) as a process with the joint distribution:[
projR(q)

]
(x0, xt1 , . . . , xtN , x1) = pWϵ(xt1 , . . . , xtN |x0, x1)q(x0, x1).

The discrete Markovian projection of q is a process projM(q) with the joint distribution:[
projM(q)

]
(x0, xt1 , ..., xtN , x1) = q(x0)

∏N+1
n=1 q(xtn |xtn−1).

D-IMF procedure starts from any discrete Brownian mixture and constructs the following
sequence of discrete stochastic processes: q2l+1 = projM(q2l), q2l+2 = projR(q2l+1).
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Main theorems

Theorem (Discrete Markovian and reciprocal process is the solution of static SB)

Consider any discrete process q, which is simultaneously reciprocal and Markovian, and has
marginals p0(x0) and p1(x1):

q(x0, xt1 , . . . , xtN , x1) = pWϵ(xt1 , . . . , xtN |x0, x1)q(x0, x1) = q(x0)
∏N+1

n=1 q(xtn |xtn−1).

Then q(x0, xt1 , . . . , xtN , x1) = pT∗(x0, xt1 , . . . , xtN , x1), i.e., it is the finite-dimensional
projection of the SB to the considered times.

Theorem (D-IMF procedure converges to the the Schrödinger Bridge)
Under mild assumptions, the sequence ql constructed by our D-IMF procedure converges in
KL to pT∗ . Namely, we have

liml→∞ KL
(
ql∥pT∗)

= 0, and liml→∞ KL
(
ql(x0, x1)∥pT∗(x0, x1)

)
= 0.
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Practical implementation of D-IMF

To implement D-IMF in practice we need:

1. Implementation of the discrete reciprocal projection. To sample from reciprocal
projection [

projR(q)
]
(x0, xt1 , . . . , xtN , x1) = pWϵ(xt1 , . . . , xtN |x0, x1)q(x0, x1)

it is enough to sample first a pair (x0, x1) ∼ q(x0, x1) and then sample intermediate points
xt1 , . . . , xtN from the Brownian Bridge pWϵ(xt1 , . . . , xtN |x0, x1).

2. Implementation of the discrete Markovian projection via DD-GAN. To find the
Markovian projection of a reciprocal process[

projM(q)
]
(x0, xt1 , ..., xtN , x1) = q(x0)

∏N+1
n=1 q(xtn |xtn−1),

one just needs to estimate the transition probabilities {q(xtn |xtn−1)}N+1
n=1 and use the

starting marginal q(x0) = p0(x0). Similarly to DDGAN, we parametrize all these
distributions as {qθ(xtn |xtn−1)}N+1

n=1 via a time-conditioned generator Gθ(xtn−1 , z, tn−1). For
a given xtn−1 sample xtn ∼ qθ(xtn |xtn−1) is obtained by first sampling x1 from the Gθ and
then using sampling from the Brownian Bridge pWϵ(xtn |xtn−1 , x1).
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Denoising Diffusion GANs6

We use Dadv as a non-saturating GAN
loss. To optimize this loss, an additional

conditional discriminator
D(xtn−1 , xtn , tn−1) is needed. In the

DDGAN the distribution q(xin|x0, x1) is
used from DDPM and it is the main

difference between our discrete
Markovian projection and DDGAN. We minimize over θ the following loss:

N+1∑
n=1

Eq(xtn−1 )Dadv
(
q(xtn |xtn−1)||qθ(xtn |xtn−1)

)
.

6Zhisheng Xiao, Karsten Kreis, and Arash Vahdat (2022). “Tackling the Generative Learning Trilemma with
Denoising Diffusion GANs”. In: International Conference on Learning Representations.
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Evaluation

To test our approach on real data, we consider the unpaired image-to-image translation setup
of learning male → female faces of Celeba dataset:

• Train-test split. We use 10% of male and female images as the test set for evaluation.
• Hyperparameters. We train our ASBM based on the D-IMF procedure with ϵ = 1 and

ϵ = 10. Following the best practices of DD-GAN, we use N = 3, intermediate times
t1 = 1

4 , t2 = 2
4 , t3 = 3

4 and K = 5 outer iterations of D-IMF.
• Evaluation protocol. We provide qualitative results and the FID metric on the test set.
• Comparison. We focus our comparison on the DSBM algorithm7 since it is closely related

to our method. We train DSBM following the authors and use NFE = 100. As well as for
ASBM, we use 5 outer iterations of IMF for continuous processes.

• We use 42M and 38M parameters of neural networks for ASBM and DSBM respectively.
7Yuyang Shi et al. (2023). “Diffusion Schrödinger Bridge Matching”. In: Thirty-seventh Conference on Neural

Information Processing Systems.
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Results on Celeba-128, male → female

(a) x ∼ p0 (b) ASBM (ours), ϵ = 1 (lower diversity)
FID = 16.08, NFE = 4.

(c) DSBM, ϵ = 1 (lower diversity)
FID = 37.8, NFE = 100.

Our algorithm is scalable and provides better results while using only 4 evaluation steps.
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Results on Celeba-128, male → female

(a) x ∼ p0 (b) ASBM (ours), ϵ = 10 (higher diversity)
FID = 17.44, NFE = 4.

(c) DSBM, ϵ = 10 (higher diversity)
FID = 89.19, NFE = 100.

DSBM experiences a notable increase in FID with ϵ = 10. We conjecture that this is due to the
FID unstability w.r.t. slightly noisy images from integration of noisy trajectories.
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Results on Celeba-128, female → male

(a) x ∼ p0 (b) ASBM (ours), ϵ = 1, (lower diversity)
FID = 16.87, NFE = 4.

(c) DSBM, ϵ = 1, (lower diversity)
FID = 24.06, NFE = 100.

Similar to DSBM, our algorithm trains both forward and backward models. The backward
model also achieves good results.

15



Thank you

Adversarial Schrödinger Bridge Matching (ASBM)
A novel Discrete-time IMF procedure in which learning of stochastic processes is replaced by

learning just a few transition probabilities in discrete time.

https://github.com/Daniil-Selikhanovych/ASBM
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