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Goal: Parallel Sampling from a Language Model

xr ~ po(x)

Many years later, as he faced the firing squad, Colonel Aureliano
Buendia was to remember that distant afternoon when his father
took him to discover ice. At that time Macondo was a village of
twenty adobe houses, built on the bank of a river of clear water
that ran along a bed of polished stones, which were white and
enormous, like prehistoric eggs. The world was so recent that

many things lacked names, and in order to indicate them 1t was
necessary to point.



Sampling from a Masked Language Model
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Challenges

e What should the noising process look like for discrete sequence models?
e How should we train a model for parallel sampling?

e (Can this process be made competitive with autoregressive models?



Many vyears later, as he faced the firing squad, Colonel
Aureliano Buendia was to remember that distant afternoon
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Masking Diffusion Language Model (MDLM)



Our Goal: Discrete Masking Diffusion
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Our Goal: Discrete Masking Diffusion
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Masking Noise
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One Step of Generation
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Experiments



Likelihood Evaluation
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Applying MDLM to Genomics
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Representation learning + Generative modeling
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Other contributions



Derivation of the Rao Blackwellized Objective
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Derivation of the Rao Blackwellized ELBO

Faster Sampler

Generative perplexity

Generative perplexities across sample times on OpenWebText
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e Derivation of the Rao Blackwellized ELBO
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e Generating Sequences of Arbitrary Length \\
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Conclusion

Diffusion Training: Average of unmasking losses
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