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Our Setting

• X , Y, Z separable Hilbert spaces.
(features, labels, parameters resp.).

• Data Distribution π ∈ P(X ×Y).
(samples (X ,Y ) ∼ π).

• ℓ : Y ×Y → R convex loss function.
• ΦN

θ a (shallow) neural network (NN)
of N units and parameters θ ∈ ZN .

ℓ : Y × Y → R
Eπ[·]

ΦN
θ

X

ΦN
θ (X) Y

(X,Y ) ∼ π

Dog image taken from [10]

We want to minimize the population risk (generalization error):

R(θ) = Eπ

[
ℓ(ΦN

θ (X ),Y )
]
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Our Setting

General Activation function (also called unit) σ∗ : X ×Z → Y.

Def. Shallow NN models (general)
ΦN

θ : X → Y with θ := (θi)N
i=1 ∈ ZN , is:

∀x ∈ X , ΦN
θ (x) := 1

N

N∑
i=1

σ∗(x ;θi) = ⟨σ∗(x ; ·),νN
θ ⟩,

where νN
θ := 1

N
∑N

i=1 δθi . Simply put: ΦN
θ = ⟨σ∗,νN

θ ⟩.

σ∗(x, θ1)

X Y

Z

σ∗(x, θN )

σ∗(x, θi)

1
N

Def. Shallow Models (general): Φµ = ⟨σ∗,µ⟩ for µ ∈ P(Z).
Barron space of such models: Fσ∗(P(Z)).

We study R : P(Z) → R given by R(µ) := Eπ

[
ℓ(Φµ(X ),Y )

]
(convex).
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Generalization in Learning: A Mean-Field view

Approximate the optimization using (noisy) SGD ({(Xk ,Yk)}k∈N
i.i.d.∼ π).

• Initialize (θ0
i )N

i=1
i .i .d .∼ µ0 ∈ P2(Z).

• Iterate, for k ∈ N, defining ∀i ∈ {1, . . . ,N}:
θk+1

i = θk
i − sN

k ∇zσ∗(Xk ,θk
i ) · ∇1ℓ(ΦN

θk (Xk),Yk)

+sN
k τ∇r(θk

i ) +
√

2βsN
k ξk

i .

Step-size sN
k = εN ς(kεN); Penalization r : Z → R; Regularizing noise ξk

i
i.i.d.∼ N (0, IdZ ), τ,β ≥ 0.

Theorem (Mean-Field limit; sketch) (see [6, 14, 19, 20] and [4, 7, 8, 15, 21, 22])(
νN

θ⌊t/εN ⌋

)
t∈[0,T ]

====⇒
N→∞

(µt)t∈[0,T ] in DP(Z)([0,T ])

where (µt)t≥0 is given by the unique WGF(Rτ,β) starting at µ0.

Entropy-regularized population risk: Rτ,β(µ) = R(µ)+ τ

∫
rdµ+βHλ(µ)

λ is the Lebesgue Measure on Z, and Hλ the Boltzmann entropy.
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Generalization in Learning: A Mean-Field view

Wasserstein Gradient Flow (WGF) for Rτ,β (denoted WGF(Rτ,β))
It is (given an i.c. µ0 ∈ P2(Z)) the unique (weak) solution, (µt)t≥0, to:

∂tµt = ς(t) [div ((DµR(µt , ·)+τ∇θr)µt)+β∆µt ] ,
with DµR : P2(Z)×Z → Z the intrinsic derivative of R (see [1, 2, 12]).

When τ,β > 0, this flow
converges to the (unique)
global minimizer of Rτ,β

(see [3, 5, 11, 17, 22])
Image taken from [16]

What if the data has some symmetries?
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Learning with Symmetries

Let G compact group with Haar measure λG ; G ⟳

ρ X , G ⟳
ρ̂ Y
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Let G compact group with Haar measure λG ; G ⟳

ρ X , G ⟳
ρ̂ Y

Equivariant Data: π s.t., if (X ,Y ) ∼ π, then:
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X Y
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Leveraging Symmetry: Data Augmentation (DA)
Draw {gk}k∈N

i .i .d .∼ λG and carry out SGD using {(ρgk .Xk , ρ̂gk .Yk)}k∈N.
Aims at optimizing the symmetrized population risk:

RDA(θ) :=Eπ

[∫
G

ℓ
(

ΦN
θ (ρg .X), ρ̂g .Y

)
dλG (g)

] ρG.X ΦN
θ (ρG.X) ρ̂G.Y

ΦN
θ : X → Y

X

∫
G

ℓ : Y × Y → R

RG(θ)

G
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Leveraging Symmetry: Feature Averaging (FA)
Training a symmetrized model, using the symmetrization operator,
given by (QG .f )(x) :=

∫
G ρ̂g−1 .f (ρg .x)dλG(g). Aims at optimizing:

RFA(θ) := Eπ

[
ℓ
(

(QG .ΦN
θ )(X),Y

)] ρG.X ΦN
θ (ρG.X)

Y
ΦN

θ : X → Y
X

∫
G

ℓ : Y × Y → R

G

ρ̂−1
G ΦN

θ (ρG.X)

QG.Φ
N
θ (X)
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Learning with Symmetries

Leveraging Symmetry: Equivariant Architectures (EA)
Let G ⟳

M Z and consider σ∗ : X ×Z → Y jointly equivariant, namely:
∀(g ,x ,z) ∈ G ×X ×Z : σ∗(ρg .x ,Mg .z) = ρ̂gσ∗(x ,z)

Fixed points: EG := {z ∈ Z : ∀g ∈ G , Mg .z = z},
correspond exactly to EAs (e.g. CNNs, GNNs).

Image taken from [9]

= σ AT
i ∈ Rb×d

x
∈
R

d

y
∈
R

c

+

B
i
∈

R
b

·Wi ∈ Rc×b ·

G ⟳ G ⟳ G ⟳

= σ AT
i

x
∈
R

d

y
∈
R

c

+ B
i· ·Wi

θi = (Wi, Ai, Bi) ∈ Z

θi = (Wi, Ai, Bi) ∈ EG

EA aims at minimizing REA(θ) := Eπ

[
ℓ

(
ΦN,EA

θ (X ),Y
)]

, with
ΦN,EA

θ := ⟨σ∗,PEG #νN
θ ⟩ and PEG .z :=

∫
G Mg .z dλG (g) orthogonal projection on EG .
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Main Results
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Two Relevant Notions of Symmetry

Subspaces of P(Z) and modifications of µ ∈ P(Z)

• Weakly-Invariant (WI) measures
PG(Z) := {µ ∈ P(Z) : ∀g ∈ G , Mg#µ = µ}

• Strongly-Invariant (SI) measures
P(EG) := {µ ∈ P(Z) : µ(EG) = 1}

P(Z)

P
(
EG

)

µEG µG

µ

PG(Z)

Assumption 1: π ∈ P2(X ×Y); ℓ convex, invariant; σ∗ jointly equivariant
+ standard assumptions from MF theory (regularity and boundedness).

Proposition 1: For Φµ ∈ Fσ∗(P(Z)), (QGΦµ) = Φ
µG .

We lift RDA, RFA and REA to P(Z) (analogous to R).

Proposition 2: RDA, RFA, REA are invariant and can be written in terms
of R and the above operations. When π is equivariant, R is invariant too.
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Invariant Functionals and their Optima

Theorem 2 (Equivalence of DA and FA):

ı́nf
µ∈PG (Z)

R(µ) = ı́nf
µ∈P(Z)

RDA(µ) = ı́nf
µ∈P(Z)

RFA(µ).
R

P(Z)

RDA

PG(Z)

RFA

Corollary 1 (quadratic ℓ, invariant πX ). For f∗ = Eπ[Y |X = ·] and R̃∗ ≥ 0:
ı́nf

µ∈PG (Z)
R(µ) = R̃∗ + ı́nf

µ∈PG (Z)
∥Φµ −QG .f∗∥2

L2(X ,Y;πX )

When π ∈ PG(X ×Y), using DA, FA or no SL technique makes no difference.

On the other hand, regarding EA:
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On the other hand, regarding EA:
Proposition 4: For really simple examples, with equivariant π, we can get:
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On the other hand, regarding EA:

Proposition 5: For quadratic ℓ and equivariant π, if EG is universal on
equivariant functions (see e.g. [13, 18, 23, 24]), then:

ı́nf
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Symmetries in the shallow NN training dynamics

Theorem 3 (Invariant WGFs): For invariant F : P(Z) → R with
well-defined WGF(F ) of unique (weak) solution (µt)t≥0:

If i.c. µ0 ∈ PG
2 (Z), then: µt ∈ PG

2 (Z) ∀t ≥ 0.

Corollary 3: For R and r invariant, under technical
assumptions [6], if i.c. of WGF(Rτ,β) satisfies
µ0 ∈ PG

2 (Z), then: µt ∈ PG
2 (Z) ∀t ≥ 0.

This applies to freely-trained NN, without SL-techniques.
minR(µ)

P(Z)

µ0

PG(Z)

Theorem 4: Also, if µ0 ∈ PG
2 (Z), then: WGF(RDA),

WGF(RFA) (and WGF(R) if R invariant), are equal.

Training with DA, FA or no SL-technique is the same.

RFA

PG(Z)

RDA

µ0
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Symmetries in the shallow NN training dynamics

Numerical Validation of our Results: Teacher-Student setting.
For X = Y = R2, Z = R2×2, we take G = C2 acting naturally, and

σ∗(x ,z) = σ(z · x) with σ pointwise sigmoidal.

WI-initialized students:
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• If f∗ is arbitrary, as N grows DA/FA increasingly stay WI and
approach each other (see Cor.3 & Thm.4).

• If f∗ is WI, the same holds for vanilla training (see Cor.3 & Thm.4).
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Symmetries in the shallow NN training dynamics

Similar results hold for P(EG); consider a variant of SGD with projected noise:

θk+1
i = θk

i − sN
k

(
∇zσ∗(Xk ,θk

i ) ·∇1ℓ(ΦN
θk (Xk),Yk)+ τ∇r(θk

i )
)

+
√

2βsN
k PEG ξk

i .

It approximates the WGF of Rτ,β

EG (µ) := R(µ)+ τ
∫

rdµ+βHλEG (µEG ).

Theorem 5: For R and r are invariant, under technical
assumptions [7]: if i.c. of WGF(Rτ,β

EG ) satisfies
ν0 ∈ P2(EG), then: νt ∈ P2(EG) ∀t ≥ 0.

If π equivariant, parameters stay SI, despite there being no
explicit constraint on them, nor any SL-technique being used.

minR(µ)

P(Z)

ν0

µ0

PG(Z)
P
(
EG

)

This holds for RDA, RFA and REA in the role of R, even if π is not equivariant.

Theorem 6: Also, if ν0 ∈ P2(EG), then WGF(RDA), WGF(RFA), WGF(REA)
(and WGF(R) if R invariant) all coincide.
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Symmetries in the shallow NN training dynamics
Back to our Numerical Experiments:

Example of optimization under an arbitrary teacher:
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Symmetries in the shallow NN training dynamics

SI-initialized students:
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• If f∗ is arbitrary, vanilla training escapes EG , regardless of N.
• DA/FA stay SI regardless of the teacher and of N (see Thm.5).
• If f∗ is WI (i.e. equivariant π), for large N, vanilla training remains SI

and approaches DA/FA (see Thms.5 & 6).

Symmetries in NNs: MF View Main Results 16 / 26



Architecture Discovery Heuristic

Finding good parameter-sharing schemes for EAs:
• Initialize E0 = {0} ≤ EG and, for j = 0,1, . . . :

• Train model initialized at νN
θ0

∈ P(Ej) for Ne epochs.
• Check if dist2(νN

Ne
,PEj #νN

Ne
) ≤ δj for threshold δj > 0.

• If not, expand: Ej+1 := Ej ⊕ vEj , with vEj = 1
N

∑N
i=1(θNe

i −PEj .θ
Ne
i ).

• Finish with a space E∗ = EG which encodes good SI architectures.
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Conclusions and Future Directions
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Conclusions and Future Directions

Conclusions
• SL techniques (DA/FA/EA) can be expressed in MF terms.
• Symmetries are respected in the MFL, even in a quite strong sense.
• DA/FA become equivalent in the MFL (and to vanilla if π equiv.).
• Numerical validation of results and possible heuristic for EA design.

Future Directions
• Quantifying convergence rates to the MFL when using SL techniques.
• Extending our shallow models analysis to more complex architectures.
• Provide theoretical guarantees for our EA-discovery heuristic
• Larger scale experimental validation (real datasets, other settings).
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Thank you for your attention!
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