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Introduction

e Natural Gradient Descent (NGD) enjoys improved convergence

O  Exact Fisher matrix is too large to store for large models F' ¢ REXP
O Preconditioned update F—1V9£(0) is impossible to compute for large models

e Empirical Fisher (EF) is a commonly used approximation for NGD

F = Zn [V@ log prn(yn)Ve logpn(yn)T] =(Vol Vgl

O Vol € RN *P s the empirical per-sample gradient, can be collected during back-propagation.
m Easytoimplement.

O EF is not theoretically well-supported.
m  Approximation quality is limited.



Inversely-Scaled Projection of Empirical Fisher (EF)

e EF update enforces Equal Per-sample Loss Reduction

Algr = —VolAOgr = —1 Vol Vel T (VelVel " + A1)~ 11 %@

® Better trained samples get significantly more updated



Visualisation on Least-Squares Toy Problem

NGDI/iEF

® Distorted Training Trajectory
® When one sample is nearly converged, the update
norm becomes larger (inversely-scaled)



Improved Empirical Fisher (iEF)

® Induced Per-sample Loss Reduction: convergence-level aware for every sample

A(l)ier = Vol AGgr ~

O ||V, L.]|2 is the logits-level gradient norm

® Inspiration : iEF Approximates per-sample loss reduction of Gauss-Newton algorithm

A(ln)on = =1[[Vz, b3

O  Gauss-Newton algorithm is a Generalised NGD method.



Visualisation on Least-Squares Toy Problem

NGDI/iEF

® (EF Adapted to the Curvature of the loss landscape
® No more Distorted Training Trajectory



Experiments

e We compare EXACT EF (empirical Fisher), iEF (improved EF) and SF (sampled Fisher) for
practical and up-to-date optimization setups.
® We consider Parameter-Efficient Finetuning setup for pretrained Transformer models for

GLUE (textual classification) and CIFAR (image classification) tasks.
O Optimisation Performance
O  Approximation Quality to NG Updates



Optimisation Performance

® Overall Test Performance:

AdamW Adafactor SGD EF SF iEF

GLUE + TS5 + Prompt Tuning - [l 67.4 48.1 69.7 79.3

GLUE + TS + LoRA 80.1 - 59 65,1 765 79.5

CIFAR100 + ViT + LoRA 93.9 - 91.3 31.0 92.8 94.3
®)

iEF achieves comparable performance with well-tuned baseline optimisers
iEF consistently outperforms SGD, EF and SF optimisers

O EF consistently suffers from unstable training and is unable to train a decent model

o



Evaluation Framework for Approximation Quality

e Traditional Methods usually requires Computation of the Exact Fisher matrix F € REXFP
O Too Expensive!

® Our Efficient Evaluation Framework for Large Scale Neural Networks
O This Framework requires only a matrix-vector-product with Fisher matrix

m Efficient to compute
m Theoretically well-supported



Approximation Quality w.r.t. Time and Damping

® Approximation quality of EF/SF/iEF updates for different damping values (x-axis is the

damping value) (y-axis is the relative approximation indicatord,) at different training stages
Epoch 1% Epoch 50% Epoch 100%

10’

10°

4=

1070 1077 10*5}\ 1028 1077 10! 107° 1077 10*5/\ 102 107" 10! 107° 1077 10*5}\ 1072 107" 10!
O EF and SF updates are sensitive to damping values

O  Optimal damping values for EF and SF vary greatly across training stages (and tasks)

O iEF has comparable performance to optimally damped SF updates

O iEF is robust to damping values (small damping would suffice)
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Conclusions

e I|dentify a crucial flaw of EF: the inversely-scaled projection issue.
e We proposed the improved EF (iEF), which is shown to be robust and achieve better quality.
® We proposed an efficient evaluation framework for the approximation quality to NG update.
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Thank you

Contact Email: xw338@cam.ac.uk
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Preliminaries

e Natural Gradient Descent (NGD) enjoys improved convergence

Fi=) » ) [Va log pn(c)Ve logpn(C)T}
O  Preconditioned update F~1V, £(9‘) is impossible to compute for large scaled neural networks
e Monte-Carlo Sampled Fisher (SF) is a well-supported approximation method
1 N K
F(K) =2, ) [Velogpa(3,”)Velogpa (i) ")

o gﬁf) ~ po(y|z,) TOO expensive, Hard to implement, Even for K = 1.

® Empirical Fisher (EF) is a commonly used approximation for NGD

~

F := Zn [V@ 108 P (Yn ) Vo 10g P (yn) T | = Vol ' Vol

O vyl is the empirical per-sample gradient. Fast, Easy to implement. Poor Quality.
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