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Multi-Agent Reinforcement Learning

Multi-agent learning in games:

@ Shared environment

@ Coupled rewards
o lterative strategy revision
@ experiment — assess — revise — experiment — ...

= Non-stationary learning problem with challenging analysis

Identify structure that can help design and analyze algorithms for games.
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Win-Stay, Lose-Shift Algorithms

Prior work on learning in games:
@ Deep analysis of particular algorithms.

@ Structural (im)possibility results for dynamics in the strategy space.

Our motivation: understand win-stay,
@ Generalize algorithms driven by best responding

@ Incorporate random search =- irregular strategy dynamics

Q: What are the limitations of such algorithms?
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Model: Finite Normal-Form Games

A game I = (n,X,{R'};) is played as follows:
@ Player i selects a strategy x' € X', for i =1,2,...,n
@ The strategy profile is denoted x = (xi mq.

@ Player i receives reward R'(x) = R'(x’,x™").

@ x| € X' is a best response to x' if it maximizes R'(-,x ") over X"

@ BR/(x™') denotes player i's set of best responses to x .

If x € BR/(x™"), we say that player i is “satisfied” at (x',x~").
If , we say that player i is “unsatisfied” at (x',x~").
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Win-Stay, Lose-Shift Algorithms (continued)

Win-stay, generalize best-response updating:

Best-response updating:

oo Xt, if x{ € BB}
t41 = i i
some x, € B,

where Bi = BR/(x; )
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Win-Stay, Lose-Shift Algorithms (continued)

Win-stay, generalize best-response updating:
Best-response updating: Win-stay, updating:
N X1, if x! € Bi ; xi, if xi e Bl

= . . X; =
t some x. € B, ) e+l ?, .
where Bi = BR/(x; ) where ‘?" is a design choice
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Win-Stay, Lose-Shift Algorithms (continued)

Win-stay, lose-shift algorithms generalize best-response updating:

Best-response updating: Win-stay, lose-shift updating:
; {x;', if xi € B] ; {x,;; if x; € B]

Xp41 = Xtr1 =

where B = BR/(x; ) where ‘7" is a design choice

Advantages of Win-Stay, Lose-Shift Algorithms:
@ Exploration: 7 may be random experimentation.
@ Fixed points: equilibria (and only equilibria) are invariant.

@ Breaking cycles: rigidly requiring x;,; € B; can cause cycles.
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Satisficing Paths

Definition: Satisficing Paths

A sequence of strategy profiles {x:}+>1 is called a satisficing path if

xi € BRI(x;') = x{1=x Vi € [n],t > 1.

Note: any Win-Stay, Lose-Shift algorithm will give rise to a satisficing path.
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Satisficing Paths

Definition: Satisficing Paths

A sequence of strategy profiles {x:}+>1 is called a satisficing path if

xi € BRI(x;') = x{1=x Vi € [n],t > 1.

Note: any Win-Stay, Lose-Shift algorithm will give rise to a satisficing path.

Question: for a game I and starting strategy profile x;, can we guarantee that a
satisficing path from x; to some Nash equilibrium of ' always exists?

Alternatively: can play be driven to equilibrium by switching only the strategies of
agents that are unsatisfied?

&

UNIVERSITY OF

& TORONTO

Yongacoglu, Arslan, Pavel, Yuksel Paths to Equilibrium NeurlPS 2024 7/11



Examples of Satisficing Paths in Rock Paper Scissors

Legend

011 162
— 1 2

X = GP N 9p )
0,1 Lo

9; = prob. player i plays a,
a € {Rock, Paper, Scissors}.

0,
x = ();7 s

ol

x' green: i satisfied at x.

&
UNIVERSITY OF

& TORONTO

Yongacoglu, Arslan, Pavel, Yuksel Paths to Equilibrium NeurlPS 2024 8/11



Examples of Satisficing Paths in Rock Paper Scissors

Ex. 1: Random experimentation when unsatisfied

0 0 0
, |1 — , |1 — , 11 — Legend
0 0 0 9} 03
x=| {6563
;1 Lok

9; = prob. player i plays a,
a € {Rock, Paper, Scissors}.

0,
x = ();7 s
0l

x' green: i satisfied at x.
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Examples of Satisficing Paths in Rock Paper Scissors

Ex. 1: Random experimentation when unsatisfied

0 0 0
= | = REIR N Legend
0 0 0 011 162
x=| |65 |63
0,1 Lo
Ex. 2: Best-responding (cycles) 9; — prob. player 7 plays 2,
0 0 1 a € {Rock, Paper, Scissors}.
, (1 — of, — , |0 —
0 1 0 o
r
x= |05,
o

x' green: i satisfied at x.
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Examples of Satisficing Paths in Rock Paper Scissors

Ex. 1: Random experimentation when unsatisfied

0 0 0
, |1 — , |1 — , 11 — -
0 0 0

Ex. 2: Best-responding (cycles)

0 0 1
, (1 — of, — , |0 — -
0 1 0

Ex. 3: Updates that increase the number of unsatisfied players + seek Nash
equilibrium when all players are unsatisfied

0 1/3] [1/3
,11/2 — s — 1/3], |1/3
1/2 1/3] |1/3
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o

0, = prob. player / plays a,

a € {Rock, Paper

o
x = ();7 ,
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, Scissors}.

x' green: i satisfied at x.
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Main Result on Path Connectivity

Any finite normal-form game I has the satisficing paths property.

(That is, from any initial strategy profile x;, there exists a satisficing path connecting x;
to a Nash equilibrium of T'.)

Insights to leverage:
@ Satisfied players are constrained, but unsatisfied players are free

@ Trying to increase the number of satisfied players (by switching unsatisfied player
strategies to best responses) may cause cycling

@ When all players are unsatisfied, the satisficing path may proceed to any successor
strategy — including jumping to equilibrium in one step.
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Proof Sketch

Beginning at arbitrary x;, we analytically construct a path to some equilibrium.

Strategy:

@ At each iteration t, select x¢41 so the set of unsatisfied players grows.

@ When the set of unsatisfied players is maximal, this process ends with x.

o If player i is at xy, free to switch.
o If player j is satisfied at x,, must use x;_; = xj.

@ Find an equilibrium for a related subgame (involves only unsatisfied players).
— Choose x,1 to switch strategies of unsatisfied players to this.

@ (Key) Lemma: x41 is a Nash equilibrium of T.
o Players satisfied at xx could (in principle) be unsatisfied at xj1.
e Requires analysis of indifference conditions for players satisfied at x.
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Conclusion

Summary

@ We studied satisficing paths, with the aim of better understanding win-stay,
lose-shift algorithms for multi-agent reinforcement learning.

@ We showed that satisficing paths to equilibrium always exist in finite
normal-form games.

Related open questions
@ e-satisficing, defined by e-best-response constraint
@ Extension to constrained subsets of strategies

@ Extension to Markov games
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