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Parameter-efficient fine-tuning (PEFT)

» Model fine-tuning > Soft prompt fine-tuning > Adapter-based fine-tuning
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LoRA: The mainstream model adaptation metho

» LoRA hypothesizes that the weights have a low “intrinsic rank” during adaptation.

X B

W A
+

Hu, Edward J., et al. ’LoRA: Low-Rank Adaptation of Large Language Models.” ICLR 2022.
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OFT: The preservation of pretrained knowledge =

» OFT emphasizes the retention of pre-trained knowledge during adaptation.
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Angular information matters

— Orthogonal fine-tuning (OFT)

Qiu, Zeju, et al. ’Controlling text-to-image diffusion by orthogonal finetuning.” NeurIPS 2023.



Is there a bridge between LoRA and OFT?
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Householder Reflection Adaptation (HRA)

» Implement OFT by a chain of Householder reflections
z = W(l_[zl Hz)w = W(H¢1(I -~ Quiuz))w, with {u; € S¥71}0_, .

| S
H()
W  XI—2umu/ XI-2uu, ... I-2uu

U1 1112 ur\

> Implement WH') with low complexity (O(d(r + dout))for W € Rbeurxd )
1) U+ = gl) — 2<ur_j,a:(j))ur_j, for j=0,...,r—1. 2)z=waz"".



ConneCthIlS to LORA: HRA 1S an adaptlve LORA 2=/ Gaoling School of Ariiial Intelligence

» Reformulation of the HR chain:
HO — H;l(I —2u;u; ) =I+U,T,U/,

» I, = |y;] € R"*"1is a upper-triangular matrix, and its upper-triangular element is

» HRA is equivalent to an adaptive LoRA, making Range(W') unchanged.
WH" =W + WU, I, U, .
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Orthogonality: The key of balancing expressiveness and regularity”

_ Regularity
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Orthogonal regularizer

> A € [0,00) : Normalization,
» A = 00: (Modified) Gram-Schmidt (GS) Orthogonalization.
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Experiments: NLP tasks

Table: Results (%) of various methods on GLUE development set.

Method #Param (M) | MNLI SST-2 CoLA QQP QNLI RTE MRPC STS-B All

Full Fine-tune 184 89.90 95.63 69.19 92.40 94.03 83.75 89.46 91.60 88.25
BitFit 0.10 [89.37 9484 66.96 83.41 9224 7870 87.75 91.35 86.20
H-Adapter 122 |90.13 9553 68.64 91.91 94.11 84.48 89.95 91.48 88.28
P-Adapter .18 9033 95.61 68.77 92.04 9429 8520 89.46 91.54 88.41
LoRA , s 1.33 | 90.65 9495 69.82 91.99 93.87 8520 89.95 91.60 88.50
AdaLoRA 127 9076 96.10 71.45 92.23 94.55 88.09 90.69 91.84 89.46
OFT _16 079 |90.33 9633 7391 92.10 94.07 87.36 92.16 9191 89.77
BOFT =2 075 |90.25 9644 7295 92.10 9423 88.81 92.40 91.92 89.89
HRA ,_s r—0 0.66 |90.70 9645 73.70 91.29 94.66 88.45 93.69 91.86 90.10
HRA ,_g y_10-5  0.66 |90.43 9679 7191 91.02 94.44 89.53 94.10 91.74 90.00
HRA ,—5 r—oc 0.66 |90.52 9587 70.71 90.71 94.12 87.00 92.59 91.54 89.13
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Experiments: Controllable text-to-image generation
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Figure: Qualitative results on subject-driven generation.
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Experiments: Controllable text-to-image generation

Ref. Img Control LoRA HRAs o HRAg 15-5

Prompt: A tree stump.

Figure: Qualitative results on controllable generation.
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Thank you for listening!

The code 1s available at https://github.com/DaShenZi1721/HRA and PEFT!
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