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Motivation

Causal disentanglement aims to uncover the underlying causal mechanisms
present in complex, unobserved systems.
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Nonlinear Additive Gaussian Equation Models

Z; = fi(Zpa(z’)) + &; Vi € [n]

e & ~ N(0,0%), fi is nonlinear
e Observed X = g(Z)

o §=H € R4 ig linear

@: Latent ©= Observed



Latent factors are identifiable with...

Graphical constraints on Access to atomic Data from multiple
the mixing process Interventions modalities
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What is identifiable without any of the above assumptions?
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Layer-wise Identifiability

Definition 1 (Identifiability up to upstream layers). The latent causal variables Z are identifiable
up to upstream layers if it is possible to learn Z (X)) from px (-) such that:

Z2(X)=P,-C-Z, VNZeR"

where P, € R™*" is a permutation matrix, and C € R"*" is a constant matrix with non-zero
diagonal entries and [C|; ; = 0 for all i, j such that i € layer(k) and j € Uj<ilayer(l).

Definition 2 (Identifiability up to layers). The exogenous noise variables € are identifiable up to
layers if it is possible to learn £(X) from px (-) such that:

EX)=P,-C-E  VEEeR",

where P, € R™*" is a permutation matrix, and C € R™*"™ is a constant matrix with non-zero
diagonal entries and [C|; ; = 0 for all i, j such that i € layer(k) and j & layer(k).

Layers of a causal DAG. A latent variable is contained
in layer(k) if its longest path to a lead node is is length k.



Preview of Main Results

Theorem 1. Under Assumptions 1 and 2, the latent variables Z are identifiable up to their upstream
layers from purely observational data.

Theorem 2. Under Assumptions 1 and 2, the exogenous noise variables £ are identifiable up to their
layers from purely observational data.

Proposition 1. Under Assumptions 1 and 2, the exogenous noise variables € are generally unidenti-
fiable beyond layer-wise transformation from observational data.

Assumption 1: Linear mixing
Assumption 2: Nonlinear additive Gaussian noise model




Learning Latent Variable Representations
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Quadratic Programming on Estimated Scores

Can solve as a rank-constrained Can solve iteratively by column as a QCQP:
optimization problem:

[H]; = arg min 0

heR
such that h'Jx(z(™)h =0, Vm e [N],
H=arg min HVar(diag(JZ (fAITx))) H : |:> KTh =1
HeR"» 0 )
N Trd . .
such that rank(H)=n h'[H]; =0, Vjeli—1],

where Jx (z(™) £ Jx (™) — (% S jX(x(m)))

Discontinuous and Non-convex Continuous

d x n dimensions n dimensions



Results on Synthetic Data
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Summary

e Prove that latent causal variables can be

disentangled up to their upstream layer
representations

e Present practical algorithm to perform such
disentanglement

e Validate our theory and algorithm with
experiments on synthetic data



