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ABSTRACT

While the Transformer architecture has become the de-facto standard for natural
language processing tasks, its applications to computer vision remain limited. In
vision, attention is either applied in conjunction with convolutional networks, or
used Lo replace certain components of convolutional networks while keeping their
overall structure in place. We show that this reliance on CNNs is not necessary
and a pure transformer applied directly to sequences of image patches can perform
very well on image classification tasks. When pre-trained on large amounts of
data and transferred to multiple mid-sized or small image recognition benchmarks
(ImageNet, CIFAR-100, VTAB, etc.), Vision Transformer (ViT) attains excellent
results compared to state-of-the-art convolutional networks while requiring sub-
stantially fewer computational resources Lo lminm



However, they are extremely sensitive to image corruptions

Corruption severity

Typical
behavior

Deer Frog Horse Deer Frog Horse Deer Frog Horse Deer Frog Horse

Desirable
behavior - | 2 wmln 111

Deer Fog Horse Deer Frog Horse Deer Frog Horse Deer Fog Horse



Previous works tackle this problem via carefully designed data
augmentation techniques for images, thus enriching the training data
to promote model robustness to corruptions.

CutOut MixUp CutMix

I Devries et al. (2017). Improved regularization of convolutional neural networks with Cutout.

2Zhang et al. (2017). mixup: Beyond Empirical Risk Minimization

3Yun et al. (2019). CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features 4
4Hendrycks et al. (2020). AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty



In this work, we introduce an alternative and domain-agnostic
approach, which is to simulate input corruptions during training using
multiplicative perturbations in the weight space.




Given a dataset S = {(x;,1;)}L, C X x ), a corruptiong : X — X ,neural network weights
w € )V, and a loss function £ . Under some weak assumptions about g and £, there exists
a multiplicative weight perturbation £, € ¥V and a constant C; > 0 such that:
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L2 regularization
where g(S) = {(g(Xz’)ayz’) fil.

Implication: The multiplicative weight perturbations (MWPs)
simulate input corruptions during training, making the model
robust to these simulated corruptions, which could also
improve its robustness to real world corruptions.



Proposed method: Data augmentation via Multiplicative Perturbations
(DAMP)

DAMP is an efficient training method that perturbs weights using multiplicative Gaussian
random variable during training by minimizing the following loss function:

A
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To efficiently estimate the expectation in the loss function, DAMP:

1. splits the training batch evenly into M sub-batches,

2. samples a weight perturbation for each sub-batch to calculate the sub-batch gradient,
3. averages over all sub-batch gradients to obtain the final gradient.

Therefore, DAMP is suitable for data parallelism in multi-GPU training.



Adaptive Sharpness-Aware Minimization optimizes deep neural
networks under adversarial multiplicative weight perturbations

DAMP minimizes the expected loss under Gaussian MWPs:

EDAMP(WBS) =

A
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Alternatively, we could minimize the loss under adversarial MWPs:

A

Lasam (w;S) := max L(wo (1+&);S) + §||w||%1
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Interestingly, by solving the inner maximization problem using the first-order Taylor
expansion, we arrive at the same update rule of Adaptive Sharpness-aware

minimization (ASAM)!

1Kwon et al. (2021). ASAM: Adaptive Sharpness-Aware Minimization for Scale-Invariant Learning of Deep Neural Networks.
2Foret et al. (2021). Sharpness-Aware Minimization for Efficiently Improving Generalization.



Adaptive Sharpness-Aware Minimization optimizes deep neural
networks under adversarial multiplicative weight perturbations

Thus, ASAM optimizes DNNs under adversarial multiplicative weight perturbations, as
opposed to its predecessor Sharpness-aware Minimization (SAM)? which optimizes
DNNs under adversarial additive weight perturbations.

=>» This explains why ASAM leads to better corruption robustness than SAM, as shown

in our experiment results. However, each iteration of ASAM and SAM takes twice as
long as that of DAMP.

1Kwon et al. (2021). ASAM: Adaptive Sharpness-Aware Minimization for Scale-Invariant Learning of Deep Neural Networks.
2Foret et al. (2021). Sharpness-Aware Minimization for Efficiently Improving Generalization.



Experiment results: ResNet50 / ImageNet

Table 1: DAMP surpasses the baselines on corrupted images in most cases and on average. We
report the predictive errors (lower 1s better) averaged over 3 seeds for the ResNet50 / ImageNet

experiments. We evaluate the models on IN-C, IN-C, IN-A, IN-D, IN-Sketch, IN-Drawing, IN-
Cartoon and adversarial examples generated by FGSM. For FGSM, we use ¢ = 2/224. For IN-C and

IN-C, we report the results averaged over all corruption types and severity levels. The Avg column
displays the average of all previous columns except IN-Clean. We use 90 epochs and the basic
Inception-style preprocessing for all experiments.

Error (%) |

Method
IN-Clean  FGSM IN-A IN-C IN-C IN-Cartoon IN-D IN-Drawing IN-Sketch Avg
Dropout  23.6102  90.7102 95.71c01 61.7402 61.61<01 49.6402  88.9+<0.1 774413 78.3+03 |75.5
DAMP  23.84<01 8834101 962401 958.6401 587101 4444101 8871c01 Tlligs 763102 |72.8
SAM 232401 90.440.2 96.610.1 60.210.92 60.7+0.1 47.640.1 88.310.1 74.84 401 77.5401 |74.5
ASAM 22.8501 89.740.0 96.840.1 98.940.1 99.2401 4554 <01 88.7+01 723401 76.44102 1734
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Experiment results: ViT / ImageNet / Basic Augmentations

Table 2: ViT-S16 / ImageNet (IN) with basic Inception-style data augmentations. Due to the
high training cost, we report the predictive error (lower 1s better) of a single run. We evaluate
corruption robustness of the models using IN-A, IN-D, IN-Sketch, IN-Drawing, IN-Cartoon and

adversarial examples generated by FGSM. For IN-C and IN-C, we report the results averaged over
all corruption types and severity levels. For FGSM, we use ¢ = 2/224. We also report the runtime of
cach experiment, showing that SAM and ASAM take twice as long to run than DAMP and AdamW
given the same number of epochs. The Avg column displays the average of all previous columns
except IN-Clean. DAMP produces the most robust model on average.

Error (%) |

Method  #Epochs Runtime —
IN-Clean FGSM IN-A IN-C IN-C IN-Cartoon IN-D IN-Drawing IN-Sketch  Avg
brosoat 100 20.6h 2855 9347 9344 6587 64.52 50.37 91.15 79.62 88.06 | 7831
OPOUL 500 41.1h 2874 9095 9333 6690 64.83 51.23 92.56 81.24 87.99 | 78.63
oavp 100 20.7h 2550 9276 9292 57.85 57.02 44.78 88.79 69.92 83.16 | 73.40
200 41.1h [2375] 8433 9056 5558 55.58 41.06 87.87 68.36 81.82 | 70.65
SAM 100 41h 2391 87.61 93.96 5556 55.93 42.53 88.23 69.53 81.86 | 71.90
ASAM 100 41.1h 24.01 85.85 9299 55.13 55.64 40.74 89.03 67.80 81.47 | 71.08
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Experiment results: ViT / ImageNet / Advanced Augmentations

Table 3: ViT / ImageNet (IN) with MixUp and RandAugment. We train ViT-S16 and ViT-B16
on ImageNet from scratch with advanced data augmentations (DAs). We evaluate the models on

IN-C, IN-C, IN-A, IN-D, IN-Sketch, IN-Drawing, IN-Cartoon and adversarial examples generated

by FGSM. For FGSM, we use ¢ = 2/224. For IN-C and IN-C, we report the results averaged
over all corruption types and severity levels. The Avg column displays the average of all previous
columns except IN-Clean. These results indicate that: (1) DAMP can be combined with modern
DA techniques to further enhance robustness; (i1) DAMP is capable of training large models like
ViT-B16; (111) given the same amount of training time, it 1s better to train a large model (ViT-B16)
using DAMP than to train a smaller model (Vi'T-S16) using SAM/ASAM.

Model  Method #Epochs Runtime Error (%) |
IN-Clean FGSM IN-C 1IN-A IN-C IN-Cartoon IN-D IN-Drawing IN-Sketch Avg

Dropout 500 111h 20.25 62.45 40.85 84.29 44.72 34.35 86.59 56.31 71.03 60.07

VIT-S16 DAMP 500 111h 20.09 59.87 39.30 83.12 43.18 34.01 84.74 54.16 68.03 58.30
SAM 300 123h 20.17 59.92  40.05 8391 44.04 34.34 85.99 55.63 70.85 59.34

ASAM 300 123h 20.38 59.38 39.44 B83.64 4341 33.82 85.41 54.43 69.13 58.58

Dropout 275 123h 20.41 56.43 39.14 8285 43.82 33.13 87.72 56.15 71.36 58.83

ViT-B16 DAMP 275 124h 19.36 55.20 37.77 80.49 41.67 31.63 87.06 52.32 67.91 56.76
SAM 150 135h 19.84 61.85 39.09 82.69 43.53 32.95 88.38 55.33 71.22 59.38

ASAM 150 136h 19.40 58.87 37.41 82.21 41.18 30.76 88.03 51.84 69.54 57.48
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Conclusion

* Multiplicative weight perturbations (MWPs) improve robustness of DNNs to a
wide range of input corruptions.

* We thus introduce DAMP, a simple algorithm which perturbs weights using
Gaussian MWPs during training while having the same cost as standard SGD.

* We also show that ASAM can be viewed as optimizing DNNs under adversarial
MWPs.

* Our experiments show that DAMP improves corruption robustness of different
architectures (ResNet, ViT), and can be combined with modern augmentations
(MixUp, RandAugment) to further boost robustness.

 As DAMP is domain-agnostic, one future direction is to investigate its
effectiveness in other domains (NLP, RL).



For more information, visit the website:

https://trungtrinh44.github.io/DAMP/



https://trungtrinh44.github.io/DAMP/
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