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Generalized Linear Bandits
Confidence Sequence (CS) for the Unknown Parameter

Goal: For o € (0,1), obtain {€'(0) } > s.t. | (Elt >1:0, & %t(é)) <0

Setting. {(x,, 7))}, : adaptively collected observations satisfying E[r,|X,] = u({x,,0,)), where

ZS — 6({)61, 7’1, "',XS_I, I”S_I,XS}).

We consider CS of the form € (0) := {6’ €0 :ZL0)—-ZL( 0 ) < ﬁt(ﬁ)2 }, where

—1

A s S’H + s"g P\ :
Z60) =Y {fs(é’) s N L(T)m«x 2 } 0 = argmin,_,Z (0)

s=1

where £ (0) is the cumulative log-likelihood loss til time 7 — 1, with Lipschitz constant L.



New, State-of-the-Art CS for GLMs!

Contribution #1

Theorem 3.1. We have | (Elt >1:0, & %t(é)) < 0, where

Z (5) := {9 cO: L) -F (D)< ﬁt(é)z}

" 1 2eSL,
P0)" = logg +dlog| eV y

St
Bernoulli: 3(5)” <5 d log — = poly(S)-free for Bernoulli!!

St
<=> prior work [Lee et al., AISTATS 24]: O 5 (S +d log g>

Rmk. For self-concordant GLMs, one can have an ellipsoidal form of the CS.
yi|
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Step 1. Time-Uniform PAC-Bayes Bound

Lemma 3.3. For any data-independent “prior” (Q and any sequence of adapted “posterior”
distributions (possibly learned from the data) {P,}, the following holds:

°(

pf. Consider the likelihood ratio M (0) = exp(Z (0, ) — Z (0)). ‘ Ty oy S e

1
1211 £(0,) ~ Epop Z(0)] 2 log — + DKL(PM@)) <5

1. M(0)is a nonnegative martingale, an isty_glM(0)] by Tonelli’s theorem

1
2. By Ville’s inequality [ville, 19301, we have [P (—t > 1:EpglM(0)] > g> <0

3. “Change” Q to P, via Donsker-Varadhan variational representation of KL [Donsker & Varadhan, 1983].

KL(P,[1Q) = sup Ey plg(6)] —log _QN@[eg(H)]
2:0-R
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Step 2. Novel choice of of “prior” and “posterior” & Lipschitzness

Remark. Originally
(];[) — UHIf(@), P = Unit ( = (1 — ) 9 _|_ @) con.siQerefj in portfolio
optimization [Blum and Kalai, 1999]
d fast rates in online learning
vol(®) VOl(@) 1 . , ,
=> KL(l]j)fl ‘ (];D) p— lOg — = lOg — d lOg _ [Hazan et al., 2007; Foster et al., COLT"18].
vol(®) vol(c®)

Also, Epp [Z(O)] = L(0,) + Eygp[L(0) — Z(0)] < L) + 2L,

All in all, with probability at most o, there exists a ¢ > 1 such that

Z(0,) = Z(0) 2 log—+dlog—+ Egp[L(0)] = Z,(0,) > log — +dlog — + 2L,

Choose ¢ = min {l,d/ (2SLt)} and we are done.
6




Generalized Linear Bandits

Problem Setting

Fort € [T]:
1. The learner observes a potentially infinite (contextual) arm-set 2, C X

2. The learner chooses x, € ', according to some policy

3. Receive areward r, ~ GLM(x,, 0,; u( - ))

* @, isunknown to the learner

Goal: Minimize the regret

T
Reg?(T) := Z {,u((xt,*, 0,)) — u((x, 6’*))} where x, , := argmax,c o H((X, 0,)).

=1



Generalized Linear Bandits

Contribution #2

OFUGLB: Optimism in the Face of Uncertainty for Generalized Linear Bandits

1. Compute 0 .and € (o) - tighter confidence sequence (Theorem 3.1)!

2. (x, 0) = argmax,c o ez () u((x, 0))

3. Play x, and observe/receive a reward r, ~ GLM(x,, 0 ; u( - ))

Theorem 4.1. OFUGLB attains the following regret bound for self-concordant generalized linear

bandits w.p. at least 1 — ¢:

g(7)T SLy RﬂST 0
Reg(T) < d lo lo + d°R.R, k(T
o(T) \/ oy s loe = VE@KT)

transient term

permanent term



Generalized Linear Bandits

OFUGLB: Optimism in the Face of Uncertainty for Generalized Linear Bandits

o Linear Bandits: O ((fdﬁ )

* —> matches state-of-the-art [Flynn et al., NeurlPS'23]
o Logistic Bandits: O (d\/ I'’k, (T) + dzl(‘(T)>

* => first poly($)-free regret with computationally tractable, purely optimistic approach!!

* —> improves upon prior state-of-the-art [Lee et al., AISTATS 24]

* —> similar guarantee in a concurrent work [sawarni et al,, arXiv'24], but is intractable and involves
explicit warmup + their guarantees only apply to bounded GLBs.

o Poisson Bandits: O (dS\/ Tk, (T) + dzest(T))

* —> state-of-the-art regret guarantee
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Brief Proof Sketch of Theorem 4.1

OFUGLB: Optimism in the Face of Uncertainty for Generalized Linear Bandits

Previously: use self-concordance control lemma to obtain

16, — /]l 4, = OSP(5))

Here: maximally avoid self-concordance control => use exact ' 'Taylor expansion,

16, = 6155, = OB5)), where G(0,,v,) = AT + Z a.(0,v)xx! and

1
a(0,v) = J (1 =) (0 + vy —0))dv.
0

8(7)

10



Brief Proof Sketch of Theorem 4.1

OFUGLB: Optimism in the Face of Uncertainty for Generalized Linear Bandits
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Brief Proof Sketch of Theorem 4.1

OFUGLB: Optimism in the Face of Uncertainty for Generalized Linear Bandits

2
I

BUT, the remaining term of Cauchy-Schwartz, Z | x, how to apply elliptical

t(@ L)~ L’

potential lemma?

G(0,v) =+ o - Z a0, v)xx

11



Lemma B.2 (Elliptical Potential Lemma; EPL°). Let ©1,--- , &1 € Bd(X ) be a sequence of vectors
and V, := NI + "', x a1. Then, we have that

T
. X*T
me {1, Hth%/t—l} < 2d log (1 | Y ) . (23)
t=1
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Lemma B.2 (Elliptical Potential Lemma; EPL°). Let ©1,--- , &1 € Bd(X ) be a sequence of vectors
and V, := NI + "', x a1. Then, we have that

T
. X*T
me {1, Hth%/t—l} < 2d log (1 | Y ) . (23)
t=1
BUT, the remaining term of Cauchy-Schwartz, Z thHZ GOyt how to apply elliptical

potential lemma?

. 1 = .
G@O,v) =+ e ; a0, v)xxT

Main proof novelty: designate the “worst-case” s such that

Zuxtuzt(@ S Z min { 1, 10l |, where 7, = 2g(:)a1 + Zﬂs(e)

11 s=1



Experiments for Logistic Bandits

Better than most of existing approaches

* One may wonder, does shaving off dependencies on § really help in practice?

* Synthetic experiments show that this is indeed beneficial, by a large margin!!

12
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Thank you for your attention!
Poster Session 3 (Dec. 12, 11AM ~ 2PM)

A unified, state-of-the-art construction of likelihood ratio-based CS for any convex
GLMs, with explicit constants!

OFUGLB: A new computationally tractable, optimistic algorithm that achieves
state-of-the-art regrets for self-concordant GLB:s.

For logistic bandits, its efficacy is shown numerically.
ol Sl
=%
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