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Goal: For , obtain  s.t.  δ ∈ (0,1) {𝒞t(δ)}t≥1 ℙ (∃t ≥ 1 : θ⋆ ∉ 𝒞t(δ)) ≤ δ

Setting. : adaptively collected observations satisfying , where 
.

{(xs, rs)}s≥1 𝔼[rs |Σs] = μ(⟨xs, θ⋆⟩)
Σs := σ({x1, r1, ⋯, xs−1, rs−1, xs})

We consider CS of the form , where𝒞t(δ) := {θ ∈ Θ : ℒt(θ) − ℒt( ̂θ t) ≤ βt(δ)2}
ℒt(θ) :=

t−1

∑
s=1

{ℓs(θ) ≜
−rs⟨xs, θ⟩ + m(⟨xs, θ⟩)

g(τ) }, ̂θ t := argminθ∈Θℒt(θ) .

where  is the cumulative log-likelihood loss til time , with Lipschitz constant .ℒt(θ) t − 1 Lt



New, State-of-the-Art CS for GLMs!

Theorem 3.1. We have , where 

 

 

Bernoulli:  => -free for Bernoulli!!! 

     <=>   prior work [Lee et al., AISTATS’24]:  

Rmk. For self-concordant GLMs, one can have an ellipsoidal form of the CS.

ℙ (∃t ≥ 1 : θ⋆ ∉ 𝒞t(δ)) ≤ δ

𝒞t(δ) := {θ ∈ Θ : ℒt(θ) − ℒt( ̂θ t) ≤ βt(δ)2}
βt(δ)2 := log

1
δ

+ d log (e ∨
2eSLt

d )
βt(δ)2 ≲δ d log

St
d

poly(S)

𝒪δ (S+d log
St
d )

Contribution #1
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Proof via PAC-Bayes
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Step 1. Time-Uniform PAC-Bayes Bound



Lemma 3.3.  For any data-independent “prior”  and any sequence of adapted “posterior” 
distributions (possibly learned from the data) , the following holds:

ℚ
{ℙt}

ℙ (∃t ≥ 1 : ℒt(θ⋆) − 𝔼θ∼ℙt
[ℒt(θ)] ≥ log

1
δ

+ DKL(ℙt∥ℚ)) ≤ δ

Proof of Theorem 3.1
Step 1. Time-Uniform PAC-Bayes Bound



Lemma 3.3.  For any data-independent “prior”  and any sequence of adapted “posterior” 
distributions (possibly learned from the data) , the following holds:

ℚ
{ℙt}

ℙ (∃t ≥ 1 : ℒt(θ⋆) − 𝔼θ∼ℙt
[ℒt(θ)] ≥ log

1
δ

+ DKL(ℙt∥ℚ)) ≤ δ

pf. Consider the likelihood ratio .Mt(θ) = exp(ℒt(θ⋆) − ℒt(θ))

Proof of Theorem 3.1
Step 1. Time-Uniform PAC-Bayes Bound



Lemma 3.3.  For any data-independent “prior”  and any sequence of adapted “posterior” 
distributions (possibly learned from the data) , the following holds:

ℚ
{ℙt}

ℙ (∃t ≥ 1 : ℒt(θ⋆) − 𝔼θ∼ℙt
[ℒt(θ)] ≥ log

1
δ

+ DKL(ℙt∥ℚ)) ≤ δ

pf. Consider the likelihood ratio .Mt(θ) = exp(ℒt(θ⋆) − ℒt(θ))

1.  is a nonnegative martingale, and so is  by Tonelli’s theoremMt(θ) 𝔼θ∼ℚ[Mt(θ)]

Proof of Theorem 3.1
Step 1. Time-Uniform PAC-Bayes Bound



Lemma 3.3.  For any data-independent “prior”  and any sequence of adapted “posterior” 
distributions (possibly learned from the data) , the following holds:

ℚ
{ℙt}

ℙ (∃t ≥ 1 : ℒt(θ⋆) − 𝔼θ∼ℙt
[ℒt(θ)] ≥ log

1
δ

+ DKL(ℙt∥ℚ)) ≤ δ

pf. Consider the likelihood ratio .Mt(θ) = exp(ℒt(θ⋆) − ℒt(θ))

1.  is a nonnegative martingale, and so is  by Tonelli’s theoremMt(θ) 𝔼θ∼ℚ[Mt(θ)]

2. By Ville’s inequality [Ville, 1939], we have ℙ (∃t ≥ 1 : 𝔼θ∼ℚ[Mt(θ)] ≥
1
δ ) ≤ δ

Proof of Theorem 3.1
Step 1. Time-Uniform PAC-Bayes Bound

Anytime-valid Markov’s inequality 
for supermartingales



Lemma 3.3.  For any data-independent “prior”  and any sequence of adapted “posterior” 
distributions (possibly learned from the data) , the following holds:

ℚ
{ℙt}

ℙ (∃t ≥ 1 : ℒt(θ⋆) − 𝔼θ∼ℙt
[ℒt(θ)] ≥ log

1
δ

+ DKL(ℙt∥ℚ)) ≤ δ

pf. Consider the likelihood ratio .Mt(θ) = exp(ℒt(θ⋆) − ℒt(θ))

1.  is a nonnegative martingale, and so is  by Tonelli’s theoremMt(θ) 𝔼θ∼ℚ[Mt(θ)]

2. By Ville’s inequality [Ville, 1939], we have ℙ (∃t ≥ 1 : 𝔼θ∼ℚ[Mt(θ)] ≥
1
δ ) ≤ δ

3. “Change”  to  via Donsker-Varadhan variational representation of KL [Donsker & Varadhan, 1983].ℚ ℙt

KL(ℙt | |ℚ) = sup
g:Θ→ℝ

𝔼θ∼ℙt
[g(θ)] − log 𝔼θ∼ℚ[eg(θ)]

Proof of Theorem 3.1
Step 1. Time-Uniform PAC-Bayes Bound

Anytime-valid Markov’s inequality 
for supermartingales



Lemma 3.3.  For any data-independent “prior”  and any sequence of adapted “posterior” 
distributions (possibly learned from the data) , the following holds:

ℚ
{ℙt}

ℙ (∃t ≥ 1 : ℒt(θ⋆) − 𝔼θ∼ℙt
[ℒt(θ)] ≥ log

1
δ

+ DKL(ℙt∥ℚ)) ≤ δ

pf. Consider the likelihood ratio .Mt(θ) = exp(ℒt(θ⋆) − ℒt(θ))

1.  is a nonnegative martingale, and so is  by Tonelli’s theoremMt(θ) 𝔼θ∼ℚ[Mt(θ)]

2. By Ville’s inequality [Ville, 1939], we have ℙ (∃t ≥ 1 : 𝔼θ∼ℚ[Mt(θ)] ≥
1
δ ) ≤ δ

3. “Change”  to  via Donsker-Varadhan variational representation of KL [Donsker & Varadhan, 1983].ℚ ℙt

KL(ℙt | |ℚ) = sup
g:Θ→ℝ

𝔼θ∼ℙt
[g(θ)] − log 𝔼θ∼ℚ[eg(θ)]

Proof of Theorem 3.1
Step 1. Time-Uniform PAC-Bayes Bound

Anytime-valid Markov’s inequality 
for supermartingales



Lemma 3.3.  For any data-independent “prior”  and any sequence of adapted “posterior” 
distributions (possibly learned from the data) , the following holds:

ℚ
{ℙt}

ℙ (∃t ≥ 1 : ℒt(θ⋆) − 𝔼θ∼ℙt
[ℒt(θ)] ≥ log

1
δ

+ DKL(ℙt∥ℚ)) ≤ δ

pf. Consider the likelihood ratio .Mt(θ) = exp(ℒt(θ⋆) − ℒt(θ))

1.  is a nonnegative martingale, and so is  by Tonelli’s theoremMt(θ) 𝔼θ∼ℚ[Mt(θ)]

2. By Ville’s inequality [Ville, 1939], we have ℙ (∃t ≥ 1 : 𝔼θ∼ℚ[Mt(θ)] ≥
1
δ ) ≤ δ

3. “Change”  to  via Donsker-Varadhan variational representation of KL [Donsker & Varadhan, 1983].ℚ ℙt

KL(ℙt | |ℚ) = sup
g:Θ→ℝ

𝔼θ∼ℙt
[g(θ)] − log 𝔼θ∼ℚ[eg(θ)]

Proof of Theorem 3.1
Step 1. Time-Uniform PAC-Bayes Bound

Anytime-valid Markov’s inequality 
for supermartingales

SURVEY



6

Proof of Theorem 3.1
Step 2. Novel choice of of “prior” and “posterior” & Lipschitzness

From P. Alquier’s MLSS lecture slides



ℚ = Unif(Θ), ℙt = Unif ( Θ̃ t ≜ (1−c) ̂θ t+cΘ)

6

Proof of Theorem 3.1
Step 2. Novel choice of of “prior” and “posterior” & Lipschitzness

Remark. Originally 
considered in portfolio 
optimization [Blum and Kalai, 1999] 
and fast rates in online learning 
[Hazan et al., 2007; Foster et al., COLT’18].

From P. Alquier’s MLSS lecture slides



ℚ = Unif(Θ), ℙt = Unif ( Θ̃ t ≜ (1−c) ̂θ t+cΘ)

6

Proof of Theorem 3.1
Step 2. Novel choice of of “prior” and “posterior” & Lipschitzness

Remark. Originally 
considered in portfolio 
optimization [Blum and Kalai, 1999] 
and fast rates in online learning 
[Hazan et al., 2007; Foster et al., COLT’18].
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=> DKL(ℙt | |ℚ) = log
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= d log
1
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[ℒt(θ)] = ℒt( ̂θ t) + 𝔼θ∼ℙt

[ℒt(θ) − ℒt( ̂θ t)] ≤ ℒt( ̂θ t) + 2SLtc,

All in all, with probability at most , there exists a  such thatδ t ≥ 1

ℒt(θ⋆) − ℒt( ̂θ t) ≥ log
1
δ

+ d log
1
c

+ 𝔼θ∼ℙt
[ℒt(θ)] − ℒt( ̂θ t) ≥ log

1
δ

+ d log
1
c

+ 2SLtc

Choose  and we are done.c = min {1,d/(2SLt)}
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Generalized Linear Bandits

For : 

1. The learner observes a potentially infinite (contextual) arm-set  

2. The learner chooses  according to some policy 

3. Receive a reward  
•  is unknown to the learner 

Goal: Minimize the regret 

 where .

t ∈ [T]

𝒳t ⊂ X

xt ∈ 𝒳t

rt ∼ GLM(xt, θ⋆; μ( ⋅ ))
θ⋆

RegB(T) :=
T

∑
t=1

{μ(⟨xt,⋆, θ⋆⟩) − μ(⟨xt, θ⋆⟩)} xt,⋆ := argmaxx∈𝒳t
μ(⟨x, θ⋆⟩)

Problem Setting



Generalized Linear Bandits

OFUGLB: Optimism in the Face of Uncertainty for Generalized Linear Bandits 

1. Compute  and  - tighter confidence sequence (Theorem 3.1)! 

2.  

3. Play  and observe/receive a reward  

Theorem 4.1.  OFUGLB attains the following regret bound for self-concordant generalized linear 
bandits w.p. at least : 

̂θ t 𝒞t(δ)

(xt, θt) = argmaxx∈𝒳t,θ∈𝒞t(δ) μ(⟨x, θ⟩)

xt rt ∼ GLM(xt, θ⋆; μ( ⋅ ))

1 − δ

Reg(T) ≲ d
g(τ)T
κ⋆(T)

log
SLT

d
log

R ·μST
d

permanent term

+ d2RsR ·μ g(τ)κ(T)

transient term

Contribution #2

Nontrivial proof!!



• Linear Bandits:   

• => matches state-of-the-art [Flynn et al., NeurIPS’23] 

• Logistic Bandits:   

• => first -free regret with computationally tractable, purely optimistic approach!! 

• => improves upon prior state-of-the-art [Lee et al., AISTATS’24] 

• => similar guarantee in a concurrent work [Sawarni et al., arXiv’24], but is intractable and involves 
explicit warmup + their guarantees only apply to bounded GLBs. 

• Poisson Bandits:   

• => state-of-the-art regret guarantee

𝒪̃ (σd T)

𝒪̃ (d T/κ⋆(T) + d2κ(T))
poly(S)

𝒪̃ (dS T/κ⋆(T) + d2e2Sκ(T))

Generalized Linear Bandits
OFUGLB: Optimism in the Face of Uncertainty for Generalized Linear Bandits
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OFUGLB: Optimism in the Face of Uncertainty for Generalized Linear Bandits

Previously: use self-concordance control lemma to obtain 
∥θ⋆ − ̂θt∥Ht( ̂θt) = 𝒪(SβT(δ))

Here: maximally avoid self-concordance control => use “exact” Taylor expansion, 

, where  and 

.

∥θ⋆ − ̂θt∥G̃t( ̂θt,νt) = 𝒪(βT(δ)) G̃t( ̂θt, νt) = λI +
1

g(τ)

t−1

∑
s=1

α̃s( ̂θt, νt)xsx⊤
s

α̃s(θ, ν) = ∫
1

0
(1 − v) ·μt(θ + v(ν − θ))dv

10
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BUT, the remaining term of Cauchy-Schwartz,  , how to apply elliptical 

potential lemma?
∑

t

∥xt∥2
G̃t( ̂θt,νt)−1

G̃t( ̂θt, νt) = λI +
1

g(τ)

t−1

∑
s=1

α̃s( ̂θt, νt)xsx⊤
s

Main proof novelty: designate the “worst-case” ’s such that 

, where 

θ̄t

∑
t

∥xt∥2
G̃t( ̂θt,νt)−1 ≤ ∑

t

min {1, ·μ(θ̄s)∥xt∥2
H̄−1

t } Ht = 2g(τ)λI +
t−1

∑
s=1

·μs(θs)xsx⊤
s

11



Experiments for Logistic Bandits

• One may wonder, does shaving off dependencies on  really help in practice? 

• Synthetic experiments show that this is indeed beneficial, by a large margin!!
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Thank you for your attention!

1. A unified, state-of-the-art construction of likelihood ratio-based CS for any convex 
GLMs, with explicit constants! 

2. OFUGLB: A new computationally tractable, optimistic algorithm that achieves 
state-of-the-art regrets for self-concordant GLBs. 

3. For logistic bandits, its efficacy is shown numerically.

arXiv

Poster Session 3 (Dec. 12, 11AM ~ 2PM)
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