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Introduction

* Context: Growing size and complexity of DNNs demand efficient
training methods.

* Challenge: Sparse training helps but struggles with generalization
due to chaotic loss surfaces.

* Objective: Introduce S2-SAM to enhance sparse training with no
extra computational cost.



Motivation & Problem Statement

* Insight: Sparse networks suffer from steep, chaotic loss surfaces
as shown in visualization (Fig. 1).
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Motivation & Problem Statement

* Insight: Sparse networks suffer from steep, chaotic loss surfaces
as shown in visualization (Fig. 1).

* Problem: Current sparse training methods often fail to achieve
optimal generalization.

* Key Question: Can we improve generalization without sacrificing
sparsity or efficiency?



Proposed Method - S2-SAM

* Concept: Single-step Sharpness-Aware Minimization.

* Innovation: Leverages prior gradient information to approximate
perturbation in a single step.

* Benefit: Zero additional computational cost compared to
traditional SAM.



Technical Overview

* SAM Recap: Two-step approach to find
flatter minima.

* S2-SAM Approach: Uses prior gradients to
compute perturbation (Equation reference
from the paper).

* Diagram: Visualize the gradient flow (Fig. 2).
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Theoretical Analysis

* Convergence Proof: Overview of theoretical backing and
conditions.

* Assumptions: Unbiased gradient, smooth loss function, and
bounded variance.

* Conclusion: S2-SAM guarantees convergence with minimal
modifications.

Theorem 1. Under Assumption|1, assume that {(y, f(w,x)) is L-smooth and B-Lipschitz, suppose

Fs(w) satisfies Assumption@and minyew Fis(w) < Fs (W%) + 3 [|we 1? with A = 2L, where w,
is the intermediate solution of A, then

Fs (wo) L n(L + \)o? x 6B + 1

Eras [F (Wgr)] — Es [F (w.)] < unT 2% n

where A is SGD.

The w§ € minweyw Fs(w) is an optimal solution, and we show that the generalization error is
bounded. Based on Lemma|1, the proof of Theorem |1]is derived in Appendix/C.



Experimental Results Overview

e Datasets & Models: CIFAR-10, CIFAR-100 with ResNet-32 and
VGG-19; ImageNet-1K with ResNet-50.

* Key Metrics: Accuracy improvement and training throughput.

* Summary: Consistent improvement across various sparsity levels
and methods.



Detailed Experimental Results

* Table 1: Show test accuracy improvements with S2-SAM on
CIFAR-10/100.

* Visualization: Loss surface comparison (Fig. 3) illustrating
smoother loss with S2-SAM.

 Key Takeaway: Higher sparsity benefits more from S2-SAM.



Detailed Experimental Results

Table 1: Test accuracy (%) of pruned ResNet-32 on CIFAR-10/100.

Datasets CIFAR-10 CIFAR-100

Pruning ratio 90% 95% 98% 90% 95% 98%
ResNet-32 94.58 (Dense) 74.89 (Dense)

LT [20] 92.31 91.06 88.78 68.99 65.02 57.37

LT+ S2-SAM (ours) 92.58+0.07 (0.271) 91.474+0.10 (0.411) 89.35+0.11 (0.571) 69.34+0.09 (0.357) 65.4540.11 (0.431) 57.76+0.13 (0.391)
SNIP [21] 92.59+0.10 91.01+0.21 87.514+0.31 68.89+0.45 65.02+0.69 57.37+1.43
SNIP+ S2-SAM (ours) 93.1740.16 (0.581) 91.5940.22 (0.581) 88.08+0.29 (0.571) 69.33+0.28 (0.447) 65.6610.49 (0.641) 58.251+0.77 (0.881)
GraSP [32] 92.381+0.21 91.39+£0.25 88.81+0.14 69.24+0.24 66.50+0.11 58.43+0.43
GraSP+ S2-SAM (ours) 92.87+0.14 (0.497) 91.98+0.22 (0.591) 89.66+0.29 (0.857) 69.98+0.22 (0.747) 67.12+0.18 (0.627) 59.451+0.19 (1.021)
SET [2] 92.30 90.76 88.29 69.66 67.41 62.25

SET+ S%-SAM (ours) 92.9240.23 (0.621) 91.5040.19 (0.741) 88.78+0.20 (0.491)  70.23+0.20 (0.571)  68.2840.15 (0.871) 63.56+0.19 (1.311)
DSR [33] 92.97 91.61 88.46 69.63 68.20 61.24

DSR+ S2-SAM (ours) 93.49+0.21 (0.521) 92.08+0.22 (0.471) 89.11+0.17 (0.651) 70.11+0.16 (0.487) 68.87+0.16 (0.671) 62.00+0.17 (0.761)
RigL [23] 93.07 91.83 89.00 70.34 68.22 64.07
RigL+ S%-SAM (ours) 93.551+0.14 (0.481) 92.11+£0.21 (0.287) 90.40+0.17 (1.401)  72.38+0.11 (2.041)  70.29+0.14 (2.071) 64.98+0.06 (0.9171)
RigL (ERK) [23] 93.55 92.39 90.22 70.62 68.47 64.14

RigL (ERK)+ S%-SAM (ours) 93.7540.19 (0.207) 92.811+0.08 (0.421) 91.16+0.11 (0.941) 72.56+0.07 (1.947) 70.33£0.10 (1.867) 65.15+0.12 (1.011)
MEST (EM) [3] 92.561+0.07 91.15+0.29 89.22+0.11 70.44+0.26 68.43+0.32 64.591+0.27
MEST (EM) + S2-SAM (ours) 93.431+0.12 (0.871) 91.58+0.07 (0.437) 91.2240.14 (2.001) 71.95+0.13 (1.51x1) 70.04+0.10 (1.611)  65.69+0.34 (1.1071)
MEST (EM&S) [3] 93.2740.14 92.4440.13 90.51+0.11 71.30+£0.31 70.36+0.05 67.16+0.25
MEST (EM&S) + S2-SAM (ours)  93.39+0.17 (0.121)  92.97+0.17 (0.531)  91.324+0.18 (0.811)  72.74+0.08 (1.441)  71.85+0.09 (1.491) 69.13+0.20 (1.971)




Detailed Experimental Results

Original Original S*-SAM
SNIP -
Sparsity = 0.95 Sparsity = 0.98
Original Original
GrasP ‘ ‘ '
Sparsity = 0.95 Sparsity = 0.98
S-SAM Original S*-SAM Original S“-SAM
MEST e
Sparsity = 0.9 Sparsity = 0.95 Sparsity = 0.98




Training Efficiency

* Comparison: S2-SAM vs. SAM in terms of training speed (Table 4).

* Observation: S2-SAM maintains throughput close to original

training methods. Table 4: Training speed of SAM [25] and S?-SAM

for different sparse training at 90% sparsity.

Methods Training  Accuracy (%) Throughput (1)
Original 68.10 2148 imgs/s
GraSP SAM 68.95 1021 imgs/s
S?-SAM 68.78 2132 imgs/s
Original 72.00 3133 imgs/s
RigL SAM 72.75 1508 imgs/s
S?-SAM 72.44 3098 imgs/s
Original 73.60 2981 imgs/s
MEST (EM) | SAM 74.88 1398 imgs/s
S?-SAM 74.58 2977 imgs/s




Robustness to Perturbations

Table 5: Testing accuracy on ImageNet-C test set.

* ImageNet-C Results: Show We compare the results with and without S2-SAM

Improvement in model robustness using 80% sparsity.

(Table 5).
] ] . . Methods ImageNet-1K  ImageNet-C
* Implication: Wider loss basin Accuracy (%) _ Accuracy (%)
- : SNIP 69.70 31.12
correlates W!th better handling of  (\p. s2.5am 7055 (0851) 3487 3757)
data corruption. GraSP 72.10 32.24
GraSP + S?-SAM 72.66 (0.567)  35.17 (2.931)
MEST (EM) 75.70 33.87
MEST (EM) + S2-SAM | 76.35 (0.651)  36.98 (3.111)
RigL 74.60 33.68
RigL + S*-SAM 75.39 (0.791)  36.80 (3.121)




Application to Dense Models

* Results: Applying S2-SAM on Table 6: Testing accuracy on dense model training.
dense networks (Table 6). We compare original training with S2-SAM in

same settings.
* Finding: Effective even for

: Params. Original S*-SAM
models with lower parameter Networks ‘ Count | Accuracy (%) Aceuracy (%)
ResNet-32 1.86M 94.58 94.99 (0.4171)
MobileNet-V2 2.30M 94.13 94.55 (0.427)
VGG-19 20.03M 94.21 94.48 (0.271)
ImageNet-1K
EfficientNet-BO | 5.30M 76.54 77.10 (0.561)
ResNet-34 21.80M 74.09 74.58 (0.4971)
ResNet-50 25.50M 76.90 77.32 (0.427)




Conclusion & Contributions

e Contributions:

* |dentification of chaotic loss surfaces as a challenge in sparse
training.

* Development of S2-SAM, a zero-cost, plug-and-play sharpness-
aware minimization.

* Theoretical and experimental validation of S2-SAM's
effectiveness.

* Future Work: Potential applications to dense training.
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THAN K YOU' * See you at Vancouver Convention Center!

e Our poster session: Thu 12 Dec 4:30 p.m. PST — 7:30 p.m. PST
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