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Graph Neural Networks (GNN)

* Input: A graph with an associated feature vector at each node

e Assumption: graph and the features are correlated and we wish to
learn some signal from the input

* GNN takes the features as input to a neural network, and
incorporates the graph into its architecture



Contextual Stochastic Block Model (CSBM)

Graph ~ Stochastic Block Model + Features ~ Gaussian Mixture Model
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Spectral Decomposition M* = il’fvlvli + E?_z/li-‘viv{

Dominating signal  Corrected Convolution Matrix

Oversmoothing in uncorrected Convolutions
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increased accuracy to decreased accuracy
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Corrected Convolution
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This work: Removing the top eigenvector leads to
variance reduction without aggregation of the means



Classifiers

Linear (binary) Classifier: X - MEXw4+b

Trainable parameters

* Datais Linearly Separable if all entries in one class are positive and
all entries in the other class is negative
* For multi-class data, can apply a linear classifier to each class

n
Non-linear Classifier: Softmax(Hx( ) —C 12, IIX( ) — G ||2,---)_ .
1=
Tramable parameters

Where xik), (k) are rows of the matrix MXX



Binary Classification: Partial Recovery

* Parameters
(p—q)\np

Feature Separation: A = —

Graph Signal: y =



Binary Classification: Partial Recovery

* Parameters

Graph Signal: y = (p_quq“ P Feature Separation: A = ||, — Us|]
* Assumptions
log?n A log n
D+ q >0 y = Q(1) P
n o "N




Binary Classification: Partial Recovery

* Parameters

Graph Signal: y = (p_qugﬁ Feature Separation: A = ||y — piz]|
* Assumptions
log?n A logn
p+qZQ(g ) y 2 Q(1) O
n o) \ n

* Main Result: There is a linear classifier using k corrected convolutions
that, with high probability, has error rate at most
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Binary Classification: Exact Recovery

Suppose our parameter satisfy the addition assumptions that:
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n o 14

Then the features are linearly separable after k convolutions with high
probability



Accuracy

Accuracy

Two-Class Experiments
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Figure: Synthetic experiments with n = 2000 and feature dimension 20 averaged over 50 trials. Green line is convolution with corrected un-normalized adjacency
matrix. Orange line is convolution with normalized adjacency matrix, where v is its top eigenvector.




Multi-Class Classification: Partial Recovery

* Parameters: suppose we have L balanced classes with means 4, ... yr

: - (p—q)ynp Feature Separation: A = min —
Graph Signal: y = Tt tLlatn P o [l — w2l

* Assumptions
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* Main Result: There is a linear classifier using k corrected convolutions
that, with high probability, has error rate at most
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Thanks for Watching
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