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Graph Neural Networks (GNN)

• Input: A graph with an associated feature vector at each node

• Assumption: graph and the features are correlated and we wish to 
learn some signal from the input

• GNN takes the features as input to a neural network, and 
incorporates the graph into its architecture



Contextual Stochastic Block Model (CSBM)

Graph ∼ Stochastic Block Model + Features ∼ Gaussian Mixture Model
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Oversmoothing in uncorrected Convolutions

Dominating signal Corrected Convolution Matrix

Variance Reduction leads to 
increased accuracy

Aggregation of means leads 
to decreased accuracy
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Corrected Convolution
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This work: Removing the top eigenvector leads to 
variance reduction without aggregation of the means
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Classifiers

Linear (binary) Classifier:        𝑋 ↦  𝑀𝑘𝑋 ณ𝑤 + ณ𝑏 
Trainable parameters

Non-linear Classifier:     𝑠𝑜𝑓𝑡𝑚𝑎𝑥 ||𝑥𝑖
(𝑘)
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Trainable parameters

• Data is Linearly Separable if all entries in one class are positive and 
all entries in the other class is negative

• For multi-class data, can apply a linear classifier to each class
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 are rows of the matrix 𝑀𝑘𝑋  



Binary Classification: Partial Recovery

• Parameters

Graph Signal: 𝛾 =
𝑝−𝑞 𝑛𝑝

𝑝+𝑞
Feature Separation: Δ = | 𝜇1 − 𝜇2 |



Binary Classification: Partial Recovery

• Parameters

• Assumptions
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Feature Separation: Δ = | 𝜇1 − 𝜇2 |



Binary Classification: Partial Recovery

• Parameters

• Assumptions

• Main Result: There is a linear classifier using 𝑘 corrected convolutions 
that, with high probability, has error rate at most
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Binary Classification: Exact Recovery

Suppose our parameter satisfy the addition assumptions that:

Then the features are linearly separable after 𝑘 convolutions with high 
probability
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Feature Signal-to-Noise (||𝜇1 − 𝜇2||/𝜎)  

Graph Signal ((𝑝 − 𝑞)/(𝑝 + 𝑞))

1 Convolution 4 Convolutions 12 Convolutions

Figure: Synthetic experiments with 𝑛 = 2000 and feature dimension 20 averaged over 50 trials. Green line is convolution with corrected un-normalized adjacency 
matrix. Orange line is convolution with normalized adjacency matrix, where 𝑣 is its top eigenvector. 

Two-Class Experiments



Multi-Class Classification: Partial Recovery

• Parameters: suppose we have 𝐿 balanced classes with means 𝜇1, … 𝜇𝐿

• Assumptions

• Main Result: There is a linear classifier using 𝑘 corrected convolutions 
that, with high probability, has error rate at most
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Thanks for Watching
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