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Motivation

Goal: Answer scientific questions that are related to underlying physical
parameters from complex dynamical systems




Problem Formulation

[ODESystem; %(t) = fo(x(t))




How much do we know about the system?

[ODE system:  X(t) = fo(x(t))

System fy given by field
experts




If the functional form of the system is known

[ODE system:  X(t) = fo(x(t)) }

Corollary 1 (Full identifiability with known f)

éEargminHF(HA)—xHi (1)

fully-identifies the ground truth parameter 0.




If the functional form of the system is unknown

[ODE system:  X(t) = fo(x(t)) }

CRL

[ m—
System fg unknown approaches




Why can we use CRL for system identification?

The ground assumptions between these two fields align

param. estimation CRL
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structural identifiability o= o injectivity

Edward L Ince. Ordinary differential equations. Courier Corporation, 1956.
Ror Bellman and Karl Johan Astrém. On structural identifiability. Mathematical biosciences, 7(3-4): 329-339, 1970.



Identifiability for Unknown Systems

(e.g. with Multiview CRL)

Corollary 2 (Identifiability without known )
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g, F € argminEy & ]g(x)s—g(i)g\lé—kﬂﬁ(g(x)) —xHi—l— |F(g(X))—%
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then the parameter 6 is partially identified by g up to a diffeomorphism
in the statistical setting.

*The choice of can be generalized --"Unifying Causal Representation Learning with the Invariance Principle" Yao et al. 2024



Model Architecture

A general recipe for CRL-integrated system identifier
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‘Mechanistic Neural Networks for Scientific Machine Learning", Pervez et al. ICML 2024, "Scalable Mechanistic Neural Networks" Chen et al. 2024



Wind Simulation: Efficiently Extracting Downstream Features

Goal: Discriminating air layer thickness by wind observations
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Sea Surface Temperature: Estimating Pre-treatment Covariates

Goal: Isolating latitude-related parameters for reliable ATE estimation

ATE = E[Xl — Xo | 9]
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Sea Surface Temperature: Estimating Pre-treatment Covariates

Goal: Isolating latitude-related parameters for reliable ATE estimation
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Sea Surface Temperature: Estimating Pre-treatment Covariates

Goal: Isolating latitude-related parameters for reliable ATE estimation

ATE = E[Xl — Xo | 9]
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“The arctic has warmed nearly four times faster than the globe since 1979, Rantanen et al., Nature Communications Earth & Environment 2022.
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Conclusion

CRL Identifiability approaches can be applied beyond traditional causal models
and facilitate scientific discoveries.

Thank youl!
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