
Cheonjun Park1, Mincheol Park2,5, Hyunchan Moon3, Seokjin Go4,

Myung Kuk Yoon6, Suhyun Kim5, and Won Woo Ro2

1Samsung Electronics, 2Yonsei University, 3LG Electronics, 4Georgia Institute of Technology,
5Korea Institute of Science and Technology, 6Ewha Womans University

Background
 Depth-wise Convolution on GPUs

• Depth-wise Separable convolution (DSConv) is widely used in many fields.
• In GPUs, depth-wise convolution (DW-conv) is rearranged in a channel-by-channel format and performs multi-GEMV.
• To process DW-conv more efficiently, diagonal-wise refactorization (DR) is needed.
• With DR, it transforms into a large GEMM that GPUs can handle efficiently.
• When processing large GEMMs, GPUs use tiling (grouping) to perform multi-GEMM operations.

2

Fig.1 (a) DW-conv is rearranged to multi GEMV through (b) Channel-by-Channel on GPU execution. (c) Diagonal-wise Refactorization (DR) rearranges DW-conv
to multi-sub-GEMM. It is effective to group DR with 32 channels to form sub-GEMM, which is proportional to GPU tile size

Motivation

2

Fig.2 Depth-wise convolution on GPUs Fig.3 Comparison of accuracy drop between DCP and
channel pruning on EfficientNet-B0 using ImageNet.

 Motivation 1: Channel pruning on DW-conv has a large pruning unit size problem
• DW-conv generates a multi-GEMV format for each channel, on GPUs.
• DW-conv can also achieve structured data format, by evaluating the significance of each GEMV and eliminating

an unnecessary weight vector of GEMV.
• Eliminating a single channel from DW-conv can greatly diminish its representation power.

 Motivation 2: Hardware-unfriendly problem of weight pruning without DR
• (w/o DR) Weight pruning does not result in practical speedup from pruning.
• Since this is smaller than the GPU's tile size (32), there is almost no change in inference time since GEMV

underutilizes processing units of GPU.

Proposed Method - DEPrune

2

Fig.4 Process of Depth-wise Convolution Pruning (DEPrune).

 To address the above two issues, We propose Depth-wise Convolution Pruning (DEPrune - DCP).
 We discover that weight pruning after DR can even achieve a structured sparsity, making large GEMM on

maximize GPU parallelism.
• First, we take the weight matrix rearranged in the form of GEMM by DR.
• Second, we sort the unpruned values in ascending order and select the threshold value that corresponds to the

target pruning ratio.
• Last, for each unpruned value, if it is smaller than the threshold, we change it to zero.

Proposed Enhance Method - BWT

2

Fig.6 Overview of DEPrune and Balanced Workload Tuning (BWT). (a) DEPrune is an element-wise pruning method, that can create a structured data pattern.
(b) BWT equalizes the pruning ratio of all sub-GEMMs.

 Enhanced Method: DEPrune-B
• Motivation: Imbalance overhead problem of DEPrune

 GPUs allocate operations of a certain size to streaming multiprocessors (SMs) for
massive parallel processing.

 Therefore, DW-conv's multiple sub-GEMMs are also assigned to SMs, respectively.
 However, when applying DEPrune on DW-conv, the pruning ratio of sub-GEMMs

may differ, given the varying importance of weights between sub-GEMMs.
• Method: Balanced Workload Tuning (BWT)

 To address the workload imbalance issue of DEPrune, we propose a BWT that takes
into account the operation structure of DW-conv.

 Every sub-GEMM achieves the same target pruning ratio.

Fig.5 Measurement of speed increase by layer due
to HSR. The orange bar is the max speedup layer.

DW-conv PR is 71%.

Proposed Method (3)

2

Fig.7 Measurement of DW-conv inference time of EfficientNet-
B0 on ImageNet. Inference time decreases for each increase of

32 or more pruned vectors. GPU tile size is 32.

 Enhanced Method: DEPrune-BH
• Motivation: Unaligned problem

 to maximize parallelism, GPUs divide GEMM operations into small tiles.
 In general, the size of the tile depends on the hardware specification of GPUs, but it is usually a multiple of 32.

• Method: Hardware-aware Sparsity Recalibration (HSR)
 We propose HSR to solve the unaligned memory access problem and enhance DEPrune -B.

• 1st step : We pre-prune DEPrune-B to DW-conv.
• 2nd step : We measure two essential factors (alpha and epsilon) within the DEPrune-B model.
• 3rd step : The beta values of all layers are ranked by comparing them with each other.
• 4th step : The layer with the beta value of the top 50% is additionally removed as much as it overflows.

Fig.8 (a) Problem of unaligned pruning ratio. (b) Concept of HSR. (c) Process of DEPrune-BH.

Experiment

2

Table.1 Comparison of inference time (us) with DEPrune-BH and recent structured pruning
on ImageNet. diff. means the top-1 accuracy difference rate compared to baseline.

 On MobileNet-V2, DEPrune reduces
approximately 26.7% more FLOPs
compared to RLAL, while exhibiting a
0.2% smaller accuracy drop.

 On EfficientNet-B0, while other
methods prune around 30% of DW-
conv, our method prunes 84.7% with
only a 0.8% accuracy drop.

 On MobileNet-V3-Small and
MobileNet-V3-Large, DEPrune
achieves inference times 3.3 times
and 1.92 times faster than GFS and
FPGM, respectively, with accuracy
drops of 1.1% and 0.6% less,
respectively.

Contact
cheonjun.park@yonsei.ac.kr

	��DEPrune: Depth-wise Separable Convolution Pruning �for Maximizing GPU Parallelism
	Background
	Motivation
	Proposed Method - DEPrune
	Proposed Enhance Method - BWT
	Proposed Method (3)
	Experiment
	Thank you�

