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Background
 Depth-wise Convolution on GPUs

• Depth-wise Separable convolution (DSConv) is widely used in many fields.
• In GPUs, depth-wise convolution (DW-conv) is rearranged in a channel-by-channel format and performs multi-GEMV.
• To process DW-conv more efficiently, diagonal-wise refactorization (DR) is needed.
• With DR, it transforms into a large GEMM that GPUs can handle efficiently.
• When processing large GEMMs, GPUs use tiling (grouping) to perform multi-GEMM operations.
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Fig.1 (a) DW-conv is rearranged to multi GEMV through (b) Channel-by-Channel on GPU execution. (c) Diagonal-wise Refactorization (DR) rearranges DW-conv 
to multi-sub-GEMM. It is effective to group DR with 32 channels to form sub-GEMM, which is proportional to GPU tile size



Motivation
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Fig.2 Depth-wise convolution on GPUs Fig.3 Comparison of accuracy drop between DCP and 
channel pruning on EfficientNet-B0 using ImageNet.

 Motivation 1: Channel pruning on DW-conv has a large pruning unit size problem
• DW-conv generates a multi-GEMV format for each channel, on GPUs.
• DW-conv can also achieve structured data format, by evaluating the significance of each GEMV and eliminating 

an unnecessary weight vector of GEMV.
• Eliminating a single channel from DW-conv can greatly diminish its representation power.

 Motivation 2: Hardware-unfriendly problem of weight pruning without DR
• (w/o DR) Weight pruning does not result in practical speedup from pruning.
• Since this is smaller than the GPU's tile size (32), there is almost no change in inference time since GEMV 

underutilizes processing units of GPU.



Proposed Method - DEPrune
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Fig.4 Process of Depth-wise Convolution Pruning (DEPrune).

 To address the above two issues, We propose Depth-wise Convolution Pruning (DEPrune - DCP). 
 We discover that weight pruning after DR can even achieve a structured sparsity, making large GEMM on 

maximize GPU parallelism. 
• First, we take the weight matrix rearranged in the form of GEMM by DR. 
• Second, we sort the unpruned values in ascending order and select the threshold value that corresponds to the 

target pruning ratio.
• Last, for each unpruned value, if it is smaller than the threshold, we change it to zero.



Proposed Enhance Method - BWT
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Fig.6 Overview of DEPrune and Balanced Workload Tuning (BWT). (a) DEPrune is an element-wise pruning method, that can create a structured data pattern. 
(b) BWT equalizes the pruning ratio of all sub-GEMMs. 

 Enhanced Method: DEPrune-B
• Motivation: Imbalance overhead problem of DEPrune

 GPUs allocate operations of a certain size to streaming multiprocessors (SMs) for 
massive parallel processing. 

 Therefore, DW-conv's multiple sub-GEMMs are also assigned to SMs, respectively.
 However, when applying DEPrune on DW-conv, the pruning ratio of sub-GEMMs 

may differ, given the varying importance of weights between sub-GEMMs.
• Method: Balanced Workload Tuning (BWT) 

 To address the workload imbalance issue of DEPrune, we propose a BWT that takes 
into account the operation structure of DW-conv.

 Every sub-GEMM achieves the same target pruning ratio.

Fig.5 Measurement of speed increase by layer due 
to HSR. The orange bar is the max speedup layer. 

DW-conv PR is 71%.



Proposed Method (3)
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Fig.7 Measurement of DW-conv inference time of EfficientNet-
B0 on ImageNet. Inference time decreases for each increase of 

32 or more pruned vectors. GPU tile size is 32.

 Enhanced Method: DEPrune-BH
• Motivation: Unaligned problem

 to maximize parallelism, GPUs divide GEMM operations into small tiles. 
 In general, the size of the tile depends on the hardware specification of GPUs, but it is usually a multiple of 32.

• Method: Hardware-aware Sparsity Recalibration (HSR)
 We propose HSR to solve the unaligned memory access problem and enhance DEPrune -B.

• 1st step :  We pre-prune DEPrune-B to DW-conv.
• 2nd step : We measure two essential factors (alpha and epsilon) within the DEPrune-B model.
• 3rd step : The beta values of all layers are ranked by comparing them with each other.
• 4th step : The layer with the beta value of the top 50% is additionally removed as much as it overflows. 

Fig.8 (a) Problem of unaligned pruning ratio. (b) Concept of HSR. (c) Process of DEPrune-BH.



Experiment
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Table.1 Comparison of inference time (us) with DEPrune-BH and recent structured pruning 
on ImageNet. diff. means the top-1 accuracy difference rate compared to baseline.

 On MobileNet-V2, DEPrune reduces 
approximately 26.7% more FLOPs 
compared to RLAL, while exhibiting a 
0.2% smaller accuracy drop. 

 On EfficientNet-B0, while other 
methods prune around 30% of DW-
conv, our method prunes 84.7% with 
only a 0.8% accuracy drop. 

 On MobileNet-V3-Small and 
MobileNet-V3-Large, DEPrune
achieves inference times 3.3 times 
and 1.92 times faster than GFS and 
FPGM, respectively, with accuracy 
drops of 1.1% and 0.6% less, 
respectively.
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