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Problem Setup

 Complex physical system control task : for a control objective J, find
the optimal control signal w* such that w* and the resulted system states u

minimize J under physical dynamics constraints C(u, w) = 0:
w* = argmin,,J(u, w),
s.t.C(uw)=0

« E.g.how to control movement of wings of a jellyfish, such that it could
achieve the highest speed in fluid, under the constraints of its boundary
shapes and fluid dynamics

Fusion control Underwater robot control Rocket control



Key challenges

Physical systems are typically high-dimensional, highly nonlinear

Observed control signals are far from optimal solutions
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Classical numerical methods

Pros: (1) first principle-based, (2) accurate, (3) with guaranteed error

Cons: (1) computationally costly, (2) need rich expert knowledge, (3) weak at high-
dimensional problems

Recent deep learning-based and reinforcement methods

Pros: (1) less engineering efforts, (2) offers speedup

Cons: suffer from adversarial/myopic mode
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Approach

Training T gy u, ) .
state trajectory -~ - @ i diffuse
u[O;T].k Sy ——) .- |
control sequence = denoi
enoise
Wio,r],k
0 t T
\ J \
Inference Evaluation
\%
Vlogpg(u,w) \V4 simulate .
(reweighting) + (y — 1)Vlog p,(w) \® < = g @p
(guidance) — AV/(u,w)
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Approach - EBM Perspective

o Reformulate the physical system control task as:
u’,w* = argming w|[Eg(u,w) + 1 - J(u, w)]
Eq: energy-based model (EBM); serves the purpose of a surrogate model in approximating PDE
constraints

E, is learned by diffusion models €4: VoEy = €4

Probability: p(u,w) = 1
4 © -{ Physical constraints: C(u,w) = 0

(u,w) 7
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Approach - EBM Perspective

o Reformulate the physical system control task as:
u’,w* = argming w|[Eg(u,w) + 1 - J(u, w)]

Eq: energy-based model (EBM); serves the purpose of a surrogate model in approximating PDE
constraints

E, is learned by diffusion models €4: VoEy = €4

Denoise under
guidance of J
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Approach - EBM Perspective

o Reformulate the physical system control task as:
u’,w* = argming w|[Eg(u,w) + 1 - J(u, w)]

Eq: energy-based model (EBM); serves the purpose of a surrogate model in approximating PDE
constraints

E, is learned by diffusion models €4: VoEy = €4

e Iraining:

Loss £ = Ex-y0.x)z~p@)e~nonl||€ — €6(Trz + /1 — aye, k)||§], where z = [u, w]
o Inference (sampling)

Zx ~ N (0,1),

Zy—1 = Zi — (€9 (Zp, k) + AV,J (Z))) + &1, & ~ N (0, D),

where Z, is a noise-free estimation of z,, z;, = [u, wy]
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Approach - Prior Reweighting

e Motivation: how to obtain control sequences superior to those in training dataset?

e« Reweighted joint distribution (0 <y < 1)
py(u,w) = p¥ (W)p(u | w)/Z=pY 1 (w)p(u,w)/Z (Z is the normalization constant)
e« Reweighted energy based model form by taking logarithm:
EMw) = (y — DEgy (W) + Eg(u,w) —logZ
o Similarly, learn VE4, (w) by diffusion model €, e H \ 9aw)

e Inference (sampling):

Low
Y(w)p(ulw),y =1

Zg—q1 = Zg — 77(60 (Zg, k) + szﬂ(ik)) + &1, High
Wi_1 = W1 — Ny — Deg(wy, k) + &3,

where £,&, ~ NV (0,1), z, = [uy, wy] .

7 C(u,w) =0

I ~~~~~ .| Physical constraints

10
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Results

Our method tested in 3 different control tasks across 1D Burgers’ equation and 2D Navier-
Stokes equation.

» 1D Burgers' equation state control

« 2D jellyfish control

« 2D smoke movement control

 DiffPhyCon demonstrates superior control performance
 Better control metrics compared widely used RL methods.

+ Afast-close-slow-open pattern unveiled in 2D jellyfish movement, aligning with established findings in fluid
dynamics
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Results - 1D Burgers’ Equation

Control objective: (u;(x) is target state)

(9u B ou N 0%u

Jor ~ Uox TV ox2
u(t,x) =0,

L u(0,x) = up(x),

Jactual = f|U(T, X) — ud(X)|2 dx

in {0}xQ

Energy cost: [|w(t,x)|*dtdx

103
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Jenergy

10! E

100 4

102

1071
Jactual

(a) Partial Observation, Full Control
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| PO-FC | FO-PC | PO-PC

PID (surrogate-solver) - 0.09115 | 0.09631
SL 0.09752 | 0.00078 | 0.02328
SAC (surrogate-solver) | 0.01577 | 0.03426 | 0.02149
SAC (offline) 0.03201 | 0.04333 | 0.03328
BC 0.02836 | 0.00856 | 0.00952
BPPO 0.02771 | 0.00852 | 0.00891
DiffPhyCon-lite (ours) | 0.01139 | 0.00037 | 0.00494
DiffPhyCon (ours) 0.01103 | 0.00037 | 0.00494
104 5 T
E i = PID (surrogate-solver)
] : SAC (surrogate-solver)
1004% X4 4 ! SAC (offline)
: ¥ opg 4 : BC
2 ] | I BPPO
10 é - -:( :. e SL
L] ! % DiffPhyCon-lite (ours)
107 * L + DiffPhiCon (ours)
] : ——- Without control
100 — —
102 1071
Jactual

(b) Full Observation, Partial Control

(c) Partial Observation, Partial Control

DiffPhyCon achieves the best Performance
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Results - 2D Jellyfish Movement Control

The implicit physical dynamic is Navier-Stokes Equation:
(ov
—+Vv-VWW—vVv+Vp =0

ot
V-v=20
v(0,x) = vo(x)

\
Control objective: maximize average moving speed ¥ of the jellyfish, under energy cost constraints R (w) of
opening angles w of it wings:

J=—7+¢ R(w)

13
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Results - 2D Jellyfish Movement Control

The implicit physical dynamic is Navier-Stokes Equation:
(ov
—+vVv-WW—vVv+Vp =0

ot
V-v=20
v(0,x) = vo(x)

\
Control objective: maximize average moving speed ¥ of the jellyfish, under energy cost constraints R (w) of
opening angles w of it wings:

J=-v+{-R(w)
Full observation Partial observation
ot ERwI JI ot BRw)d T DiffPhyCon achieves

MPC 25.72 0.0112 109.17 | -150.51 0.1791 329.59 the highest moving
SL -76.94  0.1286 205.57 | -102.98 0.1188 221.79 speed and lowest
SAC (surrogate-solver) | -166.96  0.0069 18.14 | -153.09 0.0057 158.82 control objective.
SAC (offline) -158.66 0.0069 165.58 | -206.21 0.0058 211.96

BC 30.48 0.0629 32.44 20.08 0.0556 3548

BPPO 107.67 0.0867 -20.93 54.83 0.0518 -3.02

DiffPhyCon-lite (ours) 95.04 0.0746  -20.47 2.92 0.0779  74.97

DiffPhyCon (ours) 279.87 0.2058 -74.11 | 150.21 0.1269 -23.32

14



esults - 2D Jellyfish Movement Control
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Our method presents a desired fast-close-slow-open pattern.
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Results - 2D Jellyfish Movement Control

Propulsive performance and vortex dynamics
of jellyfish-like propulsion with burst-and-coast
strategy 0 @

Cite as: Phys. Fluids 35, 091904 (2023); doi: 10.1063/5.0160878 @ 1 @
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SetsctioniamalmUlioehenggesttesdien significant fast-close-slow-open motion
ARSTRAET _~ is more likely to achieve higher speed,

’
The propulsive performance and vortex dynamics of a two-dimensional model for the jellyfish-like propulsion with burst-and-coast strategy 4 Hp HH ”
are investigated using a penalty-immersed boundary method. The simplified model comprises a pair of pitching flexible plates with their Pid ’ effl cien Cy, an d Sta b | I Ity
leading edges connected. The effects of two key parameters are considered, i.e., the duty cycle (DC, the ratio of the closing phase to the whole K/ . .
period) and the bending stiffness (K). Three different wake patterns, i.e., periodic symmetric, periodic asymmetric, and chaotic wakes, are - K an g et a I P hys ICS Of F l u Id S 2 0 2 3
identified in the DC-K plane. Numerical results indicate that a significant{faSticlosesslowsopenimotioniisimorelikelyitolachieve nigherispeed, ’ ’

efficiency, and stability than a slow-close-fast-open motion, and proper higher bending stiffness is conducive to improving efficiency. A force
decomposition based on the weighted integral of the second invariant of the velocity gradient tensor is performed to gain physics insight into
the self-propulsive mechanism. It is found that the repulsive force induced by the strain-rate field between the body and the previous vortex
pair is the main driving force of the jellyfish-like motion and that capturing the previous vortex pair during the closing phase can signifi-
cantly enhance the strain rate as well as the thrust. This clarifies why the jellyfish can achieve thrust by pushing back vortex pairs. This study
provides inspiration for the design and control of flexible jet propulsion devices.

Control results of DiffPhyCon are aligning with established findings in fluid dynamics

16
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Results - 2D Smoke Control

Method J !
P ] BC 0.3085
Exit Non-controllable Area BPPO 0.3066
= SAC (surrogate-solver) | 0.3212
Target exit Controllable Area SAC(offline) 0.6503

DiffPhyCon-lite (ours) | 0.2324

DiffPhyCon (ours) 0.2254

(a) Locations of exits and obstacles (b) Locations of controllable area
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Limitation and Future Work

- Efficiency

« The inference currently involves hundreds of denoising steps. How to accelerate inference
process by using e.g., distillation or DDIM sampling methods?

* Online training

 The training is currently conducted in an offline fashion, lacking interaction with a ground-
truth solver. Incorporating solvers into the training framework could adapt to dynamicl
environment and discover novel strategies and solutions

* Closed-loop inference

* Inference presently operates in an open-loop manner. Integrating feedback from
environments would empower the algorithm to adjust subsequent control decisions based
on the evolving state of the environment

18
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Our group: Al for Scientific Simulation & Discovery Lab @ Westlake University

18

Yixuan Du

Tao Zhang Rui Wang Yue Wang Zhi-Ming Ma Tailin Wu .



If you have any questions, please feel free to contact us at:

weilong@westlake.edu.cn

hupeiyan18@mails.ucas.ac.cn

Thank you!

fengruiqgi@westlake.edu.cn

wutailin@westlake.edu.cn
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