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Introduction

Learning difficulty in large-scale MAS: Sample
inefficiency and curse of dimensionality make it
challenging to learn from scratch;

Human-On-The-Loop: As the most intuitive and
common source, humans can provide demonstrations
for agents by personally executing tasks;

Human burden mitigation: Providing step-by-step
demonstrations in MAS can be overwhelming.
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Intuition

Inspired by the hierarchical control of human daily activity, we attempt to integrate
abstract human knowledge into MARL algorithms

Human Brain
Agent Muscle
Decision Movement e

Human daily hierarchical control

Humans are naturally adept at abstracting and providing high-level knowledge, while agents are
expected to autonomously decide the utilization of the proposed knowledge.



Methodology
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Conclusion

A novel hierarchical learning framework for enhancing coordination in
large-scale MAS by leveraging suboptimal human knowledge;

« Allowing humans to provide knowledge at the top level while agents
develop their own policies at the bottom;

« This end-to-end method can help improve learning speed and final
performance, even when integrating low-performance human knowledge.






