Safe and Sparse Newton Method
for Entropic-Regularized Optimal Transport

Zihao Tang, Yixuan Qiu
Shanghai University of Finance and Economics

G 12 x%

SHANGHAI UNIVERSITY OF FINANCE AND ECONOMICS

NeurlPS 2024 @ Vancouver, December 11



Motivation and Problem Setting
Safe and Sparse Newton Method

Numerical Experiments



Motivation and Problem Setting



Optimal Transport in Machine Learning

= Optimal Transport (OT) provides a mathematical framework
for measuring and minimizing the difference between two
probability distributions.



Optimal Transport in Machine Learning

= Domain Adaptation: Matching distributions from source
and target domains.

= Generative Model: Modeling data distributions, especially in
generative adversarial networks (GANs).

= Metric: Used to define Wasserstein distances in deep learning
and other fields.



Importance of Entropic-Regularization

= Entropic Regularization introduces an entropy term to the
standard OT problem, turning the original problem into a
smooth approximation.



Importance of Entropic-Regularization

= The regularization ensures that the optimal transport plan is
computationally feasible for large-scale problems, at the cost
of some accuracy and optimality.



Formulation of Entropic-Regularized OT

= Objective function

minten(a,p)( T, M) —nh(T)
= M is the cost matrix.
M(a,b) ={T €R™™: T1l,,=a,T"1,=b,T >0}.

h(T)=> Zj Tij(1 — log Tj).
= 77 controls the level of regularization (smoothness).



Safe and Sparse Newton Method




Newton’s Method for Entropic-Regularized OT

= Advantages
= Quadratic Convergence: Newton's method converges quickly
for smooth problems, if the initial value is sufficiently close to
the optimum.
= Limitations
= Sensitivity to Initial Conditions: The algorithm can struggle
with ill conditioned problems and poor initial guesses.
= Computationally Expensive: Calculating Hessians and
solving large linear systems may become prohibitively expensive
for very high-dimensional problems.



Algorithm 1: Sparsifying the Hessian Matrix

= Fundamental Reason For Sparsification: Sparse linear

systems solve Newton directions faster.
= Good Approximation: The density of the Hessian matrix H

originates from the approximately sparse entropic-regularized
optimal transport plan T. We sparsify it using Algorithm 1,
obtaining the sparse Hessian matrix Hy, and theoretically
prove that it provides a good approximation.

Algorithm 1 Sparsifying the Hessian matrix.

Input: Dual variable vector z = (a”, 37)7, threshold parameter § > 0
Output: Sparsified Hessian matrix Hs
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¢ + select_small(A,.,J),

- A
1 diagngm)
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diag(T

: Initialize a zero matrix A € R™*"™ and compute T = 7(«, 3)
cfor j=1,2,...,m—1 do
¢ < select_small(T;,0), A.j < apply_mask(T;,¢)

A;. + apply_mask(A;., ¢)

Tln)

Density stems from the
optimal transport plan




Algorithm 2: SSNS

= Positive Definite: Ensuring the sparsified approximate
Hessian matrix Hs remains positive definite, thus safe to

compute pg

Algorithm 2 Safe and sparse Newton method for Sinkhorn-type optimal transport.

Input: Initial point wo, parameters {40, %0, c1, Cu, 5} > 0,7 > 1, po € (0, %), €1 > 0
Default values: 9 = 1,9 = 0.01,¢; =0.1,¢, = 1, s = 0.001,y =1, pg = %
Output: zj

1: for k=0,1,2,... do

2:  Compute gr = g(z), 6 = vo||gk||” :
e

3:
4: return z;
5 Compute Hjs, according to Algorithm 1 with z <z
6 Compute pi = —(Hs, + pillgrll 1)~ gk
7: Selectany & € [cr, ¢y
flor) = fzr + Eepr) . .
8: Compute p, = —————————=_my(-) is defined in (6)
pute py, o (0) — e (Expr) x(*)

Ap, if pr. < po
9: Update jugs1 = { max{pu/2, 5}, if pr > 1— po

Lk otherwise

10:  if pr > 0 then

11 Tpg1 = Tp + i

12:  else

13: T4l = Tk 10




Global convergence

Theorem (Global convergence guarantee)
Let {xx} be generated by Algorithm 2, and x* is an optimal point.

Then either Algorithm 2 terminates in finite iterations, or x
satisfies limg_ oo |lg(xk)|| = 0, limk— 00|l Xk — x*|| = 0.

= Convergence from Any Initial Point: Starting from any
arbitrary initial point xg the iterates generated by the
algorithm converge to the unique global optimum x*.

= End-to-End Efficiency: The method eliminates the need for
warm initialization with the Sinkhorn algorithm, enabling a
more streamlined, end-to-end process.

11



Quadratic local convergence rate

Theorem (Quadratic local convergence rate)
Fix & = 1. Then there exists an integer K’ > 0 and a constant

L > 0 such that for all k > K’,

Ixkr = x| < Lllxe — x*[12.

= Convergence Rate Comparable to Newton: SSNS achieves
a quadratic local convergence rate that aligns with the
Newton method using a genuine and dense Hessian matrix.
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Numerical Experiments




Numerical Experiments

= lteration v.s. Logl0 marginal errors

ImageNet (Tench vs English springer)
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Numerical Experiments

= Runtime v.s. Logl0 marginal errors

ImageNet (Tench vs English springer)
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Numerical Experiments

= The experimental results show that SSNS has advantages in
both the number of iterations and runtime in most scenarios.
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Numerical Experiments

= More experiments are in the article.
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= We propose a Hessian sparsification scheme with strict control
over approximation error.

= Based on this scheme, we prove that the sparsified Hessian
matrix is always positive definite, enabling a safe Newton-type
method that avoids singularities.

= The algorithm is easy to implement, avoids most
hyperparameter tuning, and is included in the RegOT Python
package.

= We provide rigorous global and local convergence analysis for
the algorithm, which is lacking in current literature.
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