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 Distributed Gradient Decent Ascent (DGDA)

Motivation
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➢ Depend on the prior knowledge of the objective and network

➢ Require two time-scale separation to achieve exact convergence

➢ For non-convex and smooth objectives, if 

is the envelope function
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 Related works

Motivation

5

➢ (Centralized) nonconvex minimax methods

➢ (Federated) adaptive minimax methods.

- Sharma et al. (2022) provide improved sample complexity of matching

that of the lower bound of first-order algorithms for NC-SC problem (Li et al.,

2021; Zhang et al., 2021a)

- Requiring the prior knowledge about problem-dependent parameters

- Centralized parameter-agnostic methods such as NeAda (Yang et al., 2022b)

and TiAda (Li et al., 2023)

- Ju et al. (2023) and Huang et al. (2024) introduce Adam-based federated

adaptive minimax algorithms with full-client participation

Question: Can we design a parameter-agnostic adaptive minimax

method that ensures exact convergence in fully decentralized settings?
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 A direct extension：D-TiAda

Algorithm Design
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➢ Extending TiAda (Li et al., 2023) to decentralized setting

➢ Achieve two time-scale separation automatically 

➢ There is a bias on the gradient due to the inconsistent adaptive stepsizes

-

-

-

AdaGrad
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 Bias caused by inconsistent scalars

Algorithm Design
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averaged system

➢ Bounded inconsistency of the adaptive step-sizes

-



Distributed Minimax Optimization with Adaptive Stepsizes @ NeurIPS 2024

 Counterexample

Algorithm Design
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Theorem 1 (impact of the inconsistency)

There exists a distributed minimax problem and certain initialization 

such that after running an adaptive method, it holds that for  

➢ Directly applying adaptive methods might lead to non-convergence in 

distributed settings
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Algorithm Design
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Stepsize

tracking

Adaptive

update

 D-AdaST: compact form

➢ Achieving consistency in local adaptive stepsizes asymptoticly

-

-
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 Assumptions
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Main Results

➢ (NCSC) Each      is      -strongly concave in     

➢ (Joint smoothness) Each      is      -smooth and second-order Lipschitz 

continuous in    

➢ (Stochastic gradient) The stochastic gradient of each node is unbiased 

and there exists a constant           such that                                                        

➢ (Graph connectivity) The spectral norm of the doubly stochastic matrix        

satisfies 
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 Convergence results
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Main Results

Theorem 2 (near-optimal convergence)

Suppose assumptions hold. Let                      and the total iteration 

satisfy

to ensure time-scale separation and quasi-independence of network. 

Then, 

➢ Near-optimal convergence rate                with arbitrary small 

➢ Parameter-agnostic property without requiring to know prior knowledge

is the envelope function-



Distributed Minimax Optimization with Adaptive Stepsizes @ NeurIPS 2024

 Training robust CNN on MNIST
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Experiment

AdaGrad

Adam
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 Training GANs on CIFAR-10
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Experiment

➢ Generator (min player):  four-layer transposed CNN

➢ Discriminator (max player):  four-layer CNN

➢ D-AdaST exhibits the best performance under different settings
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Conclusion

➢ Directly extending centralized adaptive method to decentralized setting,

e.g., D-TiAda, might lead to non-convergence

➢ The proposed D-AdaST achieves a near-optimal convergence rate by

stepsize tracking and is parameter-agnostic

 Takeaways

 Future works

➢ Incorporate gradient tracking to remove assumptions about the

bounded gradient norm

➢ Consider non-monotonic adaptive stepsizes, such as Adam, and

provide theoretical guarentee



Reference

➢ Sharma, P., Panda, R., Joshi, G., and Varshney, P. (2022). Federated minimax

optimization: Improved convergence analyses and algorithms. ICML.

➢ Li, H., Tian, Y., Zhang, J., and Jadbabaie, A. (2021). Complexity lower bounds for

nonconvex-strongly-concave min-max optimization. NeurIPS.

➢ Zhang, S., Yang, J., Guzmán, C., Kiyavash, N., and He, N. (2021a). The complexity

of nonconvex-strongly-concave minimax optimization. In Uncertainty in Artificial

Intelligence.

➢ Yang, J., Li, X., and He, N. (2022b). Nest your adaptive algorithm for parameter-

agnostic nonconvex minimax optimization. NeurIPS.

➢ Li, X., YANG, J., and He, N. (2023). Tiada: A time-scale adaptive algorithm for

nonconvex minimax optimization. ICLR.

➢ Ju, L., Zhang, T., Toor, S., and Hellander, A. (2023). Accelerating fair federated

learning: Adaptive federated adam. arXiv:2301.09357.

➢ Huang, F., Wang, X., Li, J., and Chen, S. (2024). Adaptive federated minimax

optimization with lower complexities. AISTATS.



Thank you!

Yan Huang

huangyan5616@zju.edu.cn

The 38th Annual Conference on Neural Information Processing Systems

(Full paper)


