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1.Motivation

= == Biased decision boundary

O Prompts optimization & Pre-trained CLIP

class prototype — . /" ’
- Text prompts optimization based methods on

downstream labeled data has proven effective In
Improving performance.

> accuracy of ImageNet from 68.7 to 69.9 with 80
handcraft prompts.
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- CLIP model is pre-trained on highly imbalanced Web-
scale data, it suffers from inherent label bias.
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> the highest class probability exceeds 0.002,
whereas the lowest is below 0.0005.
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2.Method

O A label-Free prompt distribution learning
and bias correction framework, dubbed

as Frolic

- We employ Gaussian distributions to model the
varied visual representations of text prototypes and
adaptively fuses these with the original CLIP
through confidence matching.
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- We develop a bias estimation mechanism, which
transitions the sampling process from the pre-
training data distribution to a class-conditional
sampling from downstream distribution. 200 400 600 800 1000
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2.Method

O Label-Free Prompt Distribution Learning:

- Gaussian distribution is effective to model the distribution of the CLIP features , but
require extra labeled training data.
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| 2.Method

O Prediction Fusion via Adaptive Calibration.:

- Combining the zero-shot predictions with the ones from the learned model can
further improve performance.
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2.Method

0 Correcting Pre-training Label Bias:

- Pre-training datasets typically exhibit a long-tailed concept distribution, leading to
biased performance in zero-shot models

fa(x)y = fi(x)y —|In G,], By = P(y)
A

s(x) = softmax( ff(x))
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2.Method

O Pipeline of our Frolic & Estimation of g:

Algorithm 1 Pipeline of our Frolic

I: Given: Unlabeled data {x;}¥,,
prototypes {z?} * , and 7.

: Build f.(x), _ZTX

Y

. Compute & = J[— —z Z; z

where M = & >~ x;x;

LS R

1., T

: 1, . — 1 .
4: Compute w; = 2~ "z, b; = Z; W;

277
5: Build fy(x), = w, x + b,

6: Search 7, by Eq. (9)

7: Build fi(x) = fy(x)/7 + fe(x)/7c
8: Compute A3 by Algorithm

9: return fy(x) = fr(x) — In 3

Algorithm 2 Estimation of 3

l:

- until [|3" —
10:

Given: Unlabeled data {x;} ¥ .
predictor fz(-) and tolerance e.
Initialize B°, f{ and SY by Eq. (13)
t =20
repeat
t=t+1
Update 3! by solving (S~ — I)3! = 0
Update f} = fi — 3"
Update S* from s’ = ﬁ ercj s(x).
where C’ is assigned by f§

6f Hip < e
return 3 = 3




3.Experiments

0 Main Results

Table 1: Comparison of accuracy (%) on 10 datasets for CLIP ViT-B/16 and ViT-L/14.
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Method A E < A 0 O i3 3 S —  Average

CLIP 88.9 704 248 443 477 652 86.1 625 929 66.7 64.9

TPT 87.7 68.9 247 477 424 668 846 655 941 68.0 65.0

PromptAlign 90.7 723 248 472 478 685 86.6 675 940 694 66.8
© SuS-X-SD [34] 90.5 738 28.6 545 574 66.1 860 677 936 66.5 68.4
= | TDA [15] 88.6 714 239 474 580 672 86.1 676 942 70.6 67.5
ﬁ GPT4-Prompt [40] | 91.0 745 28.0 485 488 66.8 863 655 946 72.0 67.6
o CuPL-CLIP [26] 920 732 277 543 527 664 86.2 685 946 70.7 68.6

Frolic 929 748 31.5 56.1 585 69.1 872 708 952 752 71.1

InMaP 929 71.8 284 48.0 64.1 706 &7.77 705 931 74.0 70.1

+ Frolic 93.6 743 31.8 58.0 653 71.7 882 728 954 759 72.7

CLIP 93.5 793 324 53.0 58.0 76.8 910 675 948 742 72.0

TPT 93.6 76.2 319 552 S51.8 777 889 702 955 749 71.5
= TDA [15] 93.5 80.5 347 5677 64.1 783 909 7T1.5 959 76.6 74.2
> | GPT4-Prompt [40] | 94.1 81.5 363 548 541 779 914 703 962 80.6 13.7
= | CuPL-CLIP [26] 943 798 355 6277 612 780 913 724 96.7 759 74.7
Z | Frolic 949 824 40.0 o64.1 662 808 91.8 745 97.2 80.0 77.1

InMaP 95.2 80.7 37.6 602 70.6 825 922 750 949 804 76.9

+ Frolic 954 81.8 42.1 669 710 835 924 773 973 82.2 78.9




3.Experiments
0 Main Results

Table 2: Comparison of accuracy (%) on ImageNet and its variants for CLIP ViT-B/16 and ViT-L/14.

Method IN IN-V2  IN-Sketch IN-A  IN-R  ObjectNet  Average
CLIP 68.7 62.2 48.3 50.6 77.7 53.5 60.1
TPT 68.9 63.4 479 54.7 77.0 55.1 61.1
TDA[15] 69.5 64.6 50.5 60.1 80.2 55.1 63.3
© | GPT4-Prompt 68.7 62.3 48.2 50.6 17.8 53.7 60.2
E@ CuPL-CLIP 69.9 64.4 4904 59.7 79.5 53.7 62.7
; Frolic 70.9 64.7 53.3 60.4 80.7 56.6 64.4
InMaP 72.5 62.3 494 52.2 79.2 54.5 61.6
+ Frolic 73.3 63.8 52.9 52.8 79.6 56.4 63.1
CLIP 75.9 70.2 59.7 70.9 87.9 65.5 71.6
TPT 75.5 70.0 59.8 74.7 87.9 68.0 72.6
< TDA[15] 76.3 71.5 61.3 77.9 89.8 67.0 73.9
= | GPT4-Prompt 75.3 70.3 59.9 71.2 87.8 65.7 71.7
i CuPL-CLIP 76.2 71.9 60.7 77.9 89.6 65.7 73.6
= | Frolic 77.4 72.5 63.1 78.9 90.3 68.7 75.1
InMaP 79.3 72.1 65.1 62.5 84.8 71.0 72.4
+ Frolic 79.7 73.1 65.7 64.0 85.9 71.7 73.3




3.Experiments
0 Ablation Study

Table 3: Accuracy (%) of different models on 10-datasets, ImageNet and its five variant datasets.

Model VIT-B/16 VIT-L/14
ode 10-datascts ImagcNet IN-Variants | 10-datasets ImageNcet IN-Variants
Original CLIP (1) Je 635.1 68.7 38.5 72.0 75.9 712.3
(2) fce—Inp3 68.4 69.7 61.2 75.1 76.2 73.4
Prompt Distribution (3)  f, 68.8 69.8 61.3 74.7 76.0 73.1
4) [+ [g 66.3 68.9 59.1 72.5 76.1 72.4
Confidence Matching (5)  fr = [ /Tc + [o/ 7% 70.4 69.8 61.9 75.5 76.9 73.9
6) fa=/[r—In3 71.1 70.9 63.1 77.2 77.4 77.4




3.Experiments
0 Ablation Study

Table 4: Comparison of accuracy (%) between our Frolic and other label bias correcting methods.

— 5]

% = < < Z

: 5 o 8 . = 9z 2 = &

= = E= — = = o) = O <
Model o i < - & S i a S — ks Avg.
CLIP [28] 89.1 714 248 443 477 652 86.1 625 929 667 687 654
TDE [33 84.1 658 274 498 553 603 84.6 655 91.6 682 659 653
Implicit 914 714 306 542 568 660 86.6 695 935 726 698 69.3
Frolic 929 748 314 561 585 69.1 87.1 708 951 752 709 709

Oracle Frolic  93.1 775 322 573 598 698 874 712 957 763 715 719




3.Experiments
0 Ablation Study
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4.Contributions

O We enhance zero-shot performance by estimating a distribution over prompt

prototypes to capture the variance in visual appearances. WWe demonstrate
that this process can be implemented entirely without labels.

O We propose a confidence matching technique that fuses the original CLIP

model with a Gaussian distribution-based model to further enhance zero-shot
performance.

O We develop an unsupervised method to correct pre-training label bias.
Unlike existing methods that require access to pre-training data.
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