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Problem Description

Minimax Problems

We consider unconstrained minimax problems with a finite-sum structure:

n

mwinmgx flx,y) = %Zfz(mvy)

i=1

Very versatile, and has many ML applications:
o Generative Adversarial Networks
e Consistency Trajectory Models

Sharpness-aware Minimization

Computing Optimal Transport Maps
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Minimax Problems

We consider unconstrained minimax problems with a finite-sum structure:

n

mwinmgx flx,y) = %Zfz(mvy)

i=1

Denote both min. and max. variables at once by z := (x,y).

The saddle gradient

F(z)=

Va f(z.y)
_vy f(CC, y)

is more natural than V f in minimax problems.
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Problem Description

The Extragradient Method

The gradient descent-ascent (GDA) method

41 = Tk — MV f(Tr, Yi)

Yi+1 = Yk + M Vy f(Tr, Yr)

Zkt1 = 2k — M F (zg) or

already does not work for simple convex-concave problems.

The extragradient (EG) method (Korpelevich, 1976)

wy, = 2z, — N F (z1)

or  zpp1 = zk — eF (2 — M F(21))
Zpt1 = 2 — NpF(wy)

on the other hand, works on convex-concave problems.
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Problem Description

Stochastic Extragradient?

Unlike GDA vs EG, the stochastic EG (SEG)

ziv1 = 2k — MeFi) (26 — e Fir) (1))
does not show a clear advantage in convex-concave problems over GDA.

Even if we additionally assume each f; are also convex-concave,
convergence rates typically look something like:

1

i Fz|? < -
O K 1Fzl" < © (poly(K)

) + (abs. const.)
k=0,1,...,

* The constant term can be decreased only with strong additional assumptions, such as
for example, increasing the batch size every iteration.

Jiseok Chae (KAIST) Stochastic EG w/ Flip-Flop Anchoring



Problem Description

For minimization problems...

With-replacement stochastic gradient descent (SGD) works well.

T1 = Tk — M6V fik) (k) i(k) ~ Unif({1,...,n})

In practice, shuffling based SGD is used.

Random reshuffling (RR): in the kth epoch, a permutation

7 : {1,...,n} = {1,...,n} is chosen randomly, and
mk:mk kzvak ( i— 1) r=1,....n,
k+1 — :13
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For minimization problems...

With-replacement stochastic gradient descent (SGD) works well.

T1 = Tk — M6V fik) (k) i(k) ~ Unif({1,...,n})

In practice, shuffling based SGD is used.

Flip-flop sampling (FF) (Rajput et al., 2022) goes one step even further in
search for a better sampling scheme: in the kth epoch, a permutation

7 {1,...,n} = {1,...,n} is chosen randomly, and
mf: f 1 T/kvf’rk (m 1) 7':]_’__,”[%
mfz {C 1 nkvf‘rk 2n+1— 1)(1‘. 1)7 [:n+1772n7
k41 k
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Problem Description

For minimization problems...

With-replacement stochastic gradient descent (SGD) works well.

T1 = Tk — M6V fik) (k) i(k) ~ Unif({1,...,n})

In practice, shuffling based SGD is used.

In terms of convergence rates,

e RR is in general faster than with-replacement SGD.
(Ahn et al., 2020; Mishchenko et al., 2020)

e If all f; are quadratic functions then FF is even faster, thanks to the
stochastic error term being smaller. (Rajput et al., 2022)
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Main Results

Our contributions

e Stochastic EG indeed does not work on convex-concave problems.
Shuffling does not resolve the problem.

— An explicit counterexample with divergent iterates
e On top of FF, adding a simple anchoring step

k k
k1, Zan t 2
2

reduces the stochastic error by an order of magnitude (w.r.t. stepsize),
finally allowing a convergence rate of O(1/k'/3).

e The reduced error also benefits the convergence on strongly-convex-
strongly-concave problems, enjoying a rate of O(1/ni*).

— Without anchoring (i.e., with-replacement sampling or RR only),
the convergence rate is at best Q(1/nk?).
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Algorithm
Stochastic Extragradient with Flip-Flop Anchoring (SEG-FFA)

For each k =0,1,...:
Tk ™~ Unif(Gn)
Foreach i =1,...,n:
) Nk
z]t‘" = zf—l —mFr ) (zf—l - ?Fm(i)(zf—l)>

Foreachi=n+1,...,2n:

z

Mk
ch = zzk—l - nkFTk,,(?n—l—l—i,) (zyk—l - ?FTk(Zn—l—l—i) (z/{f—l)>
k k
z zZ
2 2n;' 0
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Main Results

Thank you for your attention.

Visit us at the Poster Session!
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