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Motivation

The distribution of CWE-416 (left) and CWE-
119 (right) vulnerabilities across all modules 
in the Linux kernel over the past decade.

• Examples

CWE-416 (left) and CWE-119 (right) discovered 
in the net module.

Potential vulnerability patterns associated with program behavior 
differ and have distinct characteristics depending on the context of 
different detection targets and tasks.

• Key observations



Motivation

Difficult to make full use of known information in diverse practical task 
scenarios to characterize the potential vulnerability characteristics of 
different target codes.

• Problem
Existing deep learning-based vulnerability detection methods primarily employ 
a uniform and consistent feature learning pattern across the entire target :

(1) Focusing on target code projects (without concern 

for specific vulnerability types) : IVDetect, Reveal…

(2) Focusing on specific vulnerability types (existing in 

different code projects): Vuldeepecker, Ubitect…

General-Purpose 
Detection Tasks



The KF-GVD Framework

• The overall architecture of KF-GVD

KF-GVD, a Knowledge Fusion-based GNN model for source code Vulnerability 
Detection.



• Code property graph generation

• Feature representation

The KF-GVD Framework

• Task-oriented vulnerability knowledge extraction

• Graph embedding

Vulnerable program operations

Sensitive functions

Customized knowledge for specific tasks

Node feature vectors 

Adjacency matrix 



• The Workflow of KF-GVD

The KF-GVD Framework

The training of model for a subtask :

1) Dataset collection.

2) Initialize the parameters of f using ஽ೀ.

3) Perform feature fusion only on the data ௧
ᇱrandomly sampled from ௧:



• Comparison of Function-Level Vulnerability Detection Results

KF-GVD demonstrates an improvement in precision by 0.6%-44%, 
recall by 5.8%-29.3%, and an average gain of 22.6% on F1-score.

Evaluation



• Comparison of Statement-Level Vulnerability Detection Results

Evaluation

KF-GVD achieves an average 
improvement of 59.7% in 
precision, 30.9% in recall, and 
42.4% in MAP@5.



• Undisclosed Vulnerabilities Detected by KF-GVD

Case Study



• Jingjing Wang:  jennywangel@163.com
• Supplementary Material: https://github.com/fgVDgnn/KF-GVD/tree/master
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