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Meta-RL and the Multi-Task Barrier

Black-Box Meta-RL adapts to unfamiliar situations using memory of previous attempts (“in-

context learning”) . It focuses on the engineering problem of training sequence models with RL.

We want to train on as many tasks as possible to generalize at test-time, but efforts to add
new reward functions introduce multi-task RL problems that prevent us from learning the

tasks we already have.

Our work studies a simple
and scalable solution to this
problem that breaks the
“multi-task barrier” and lets
us train sequence models
with RL in more diverse
multi-task environments.

Meta-RL

Adaptation to unseen
variations of a single task

Multi-Task RL

Joint optimization of
multiple tasks

Breaking the Multi-Task Barrier

Multi-Task RL has solutions, but they scale

with task count and require task labels 2

There’s an easy issue we can fix: multi-task RL

losses depend on current value estimates.
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during training. Tricks like turning Q-learning
into a classification can help patch this.
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1. Gradient Editing

piemuo}-paa4
uoljezijewJlou
ainjead

etal., 2021

2. Task-Specific Parameters
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3. Task Loss Rescaling
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We train Transformers on multi-task training sets of
meta-learning and memory problems. We share
many low-level details with sequence modeling, but

we’re still doing end-to-end off-policy actor-critic RL.

Can a simple change in loss function improve multi-

task performance?
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This issue arises naturally in domains
that are combinations of different
meta-RL tasks. A famous example is
the Meta-World ML45 training set,
which is effectively a multi-task RL

problem -

We create two new large-scale
examples: Multi-Task POPGym and
Multi-Task BabyAl. Scale-resistant
objectives like value classification let
us learn from more training tasks, and
create an opportunity to reach
towards more generalist domains.
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< We can use 5 Procgen games to
demonstrate the impact of value
scale on multi-task sequence
policies by multiplying rewards by a
constant. Scale-resistant updates
perform better as value estimates
diverge.
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Multi-Task BabyAl: Average Total Return Per 2-Episode Rollout ( €[0, 2])
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We emphasize that
black-box meta-RL is a
general case of multi-
task RL, and inherits
many of its challenges.

Scan the QR code to

find our paper, code,

and a more detailed
summary.

< For example,

classification losses can

help a Transformer play R L el Y el
10 Atari games at the
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