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Large Language Models (LLMSs)

LLMs have demonstrated extraordinary capabilities across a wide range of tasks.

Dataset Metric gpt-4o ol-preview o1l
Competition Math cons@64 13.4 56.7 83.3
AIME (2024)

pass@1 9.3 44.6 4.4
Competition Code Elo 808 1,258 1,673
CodeForces

Percentile 11.0 62.0 89.0
GPQA Diamond cons@64 56.1 78.3 78.0

pass@1 50.6 73.3 7.3
Biology cons@64 63.2 73.7 68.4

pass@1 61.6 65.9 69.2
Chemistry cons@64 43.0 60.2 65.6

pass@1 40.2 59.9 64.7
Physics cons@64 68.6 89.5 94.2

pass@1 59.5 89.4 92.8
MATH pass@1 60.3 85.5 94.8

Table from https://openai.com/index/learning-to-reason-with-lims/
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Large Language Models (LLMSs)

LLMs may generate harmful and helpless content.

@ -3  “This is how you destroy the world...”
1 — “Sorry, | can not help you...”



Noisy Preferences

Alignment methods are essential to ensure that large language models generate
helpful and harmless content aligned with human preferences.

3>%_’@
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Noisy Preferences

Noisy preferences in datasets can spoil the alignment.
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clean preferences

noisy preferences
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Motivation

Existing methods mitigate the issue of noisy preferences from the loss
function perspective by adjusting the alignment loss based on a clean

validation dataset.

..............

Geopo (2, Gu, 13 0) = (1 —i€)Gpro (2, Fu, 13 0) + € Goro (2, iy §u; 0),

(1 —ie"¥Gpro (T, Yuw, U3 0) — € Goro(x, Ui, Yu; 0)

-----
.......

Gioro (T, Yuw, Y13 0) =

estimated using a clean validation set
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Motivation

How to better reduce the impact of noisy preferences on alignment?

We propose perplexity-aware correction from the data perspective
for robust alignment which detects and corrects noisy preferences.
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PerpCorrect: Perplexity-aware Correction

PPLDIff(x, §i,, 71; ) = log PPL([x; 71, ]; ) — log PPL([x; 7,]; 0),
t
1
PPL(s; 6) = exp | — ) logmp (sils<)
i=1

PPL([x; ywl; ) < PPL([x;y1]; 6)

clean preferences: (x, $y, ¥) = (x, Y, y1), PPL([x; 3, ]; 0) < PPL([x; 7,]; 6)
noisy preferences: (x, ,, %) = (x, v, ¥w), PPL([x; #,]; 8) > PPL([x; ¥]; 6)

Intuitively, clean preferences have lower PPLDiff values than noisy preferences.



PerpCorrect: Perplexity-aware Correction
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PPLDiff PPLDiff PPLDift PPLDiff
(a) PPLDIff calculated by an untrained LLM.  (b) PPLDiff calculated by a surrogate LLM, which (c) Iteratively selecting reliable unlabeled (d) Using PPLDiff calculated by surrogate LLM
is trained with small amount of labeled data. data to train the surrogate LLM. to detect and correct noisy preferences.
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Robust Alignment via PerpCorrect

Algorithm 1 Robust Alignment via Perplexity-aware Correction (PerpCorrect)

1: Input: Noisy training dataset D, clean validation dataset Dy, and pre-trained LLM 7y parame-
terized by 6
2: Output: Robust alignment model 7y
3: // Stage I: Supervised fine-tuning (SFT)
4: 1 < Supervised fine-tuned LLM 7y. (Details in Appendix C.3)
:_5:_//_8‘[?1gg I Fe?pl?ex?ty_a&a?e?:o?r&:ti_on_ ugir;g the s;rrr)ggte_ LLM I
16: Ddenoiseds € onoiseq < Perplexity-aware Correction (7, D Dya1) (Details in Algorithm 2) :

7: // Stage III: Alignment with denoised dataset
8: mp < Aligned LLM 7y using Dgenoised and €. :..q (Details in Appendix C.3)

NeurlPS 2024
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Empirical Results

Evaluated using different LLMs

Vanilla DPO: [Rafailov et al., NeurlPS 2023]
cDPO: [Eric Mitchell]
rDPO: [Chowdhury et al., ICML 2024]

— O o e s P T T OEE o o o e R o o e oy

I Evaluated using different series of alignment methods
I —

' I
"' Table 1: Average reward accuracy of DPO seq Table 2: Average reward accuracy of PPO se-,
ries alignment methods using Llama2-7B on the* ries alignment methods using Llama2-7B on the |

| Golden HH dataset. I Golden HH dataset.

I Proportion of noisy preferences (%) I Proportion of noisy preferences (%)

I Method (R 0 - Method 050 40

| Vanilla DPO 92.53% 82.62% 68.50% 53.15% | Vanilla PPO 96.64% 92.71% 90.21% 86.29%

I cDPO 96.04% 90.85% 83.23% 65.60% = cPPO 96.18% 93.63% 90.62%  88.02%
rDPO 96.65%  9522%  93.90% 90.45% | rPPO 95.92% 93.73% 92.05% 90.62%

I PerpCorrect-DPO  97.51% 96.24% 95.53% 94.92% . PerpCorrect-PPO  96.38% 94.04% 93.99% 93.17%

oot - __"'—"'_.‘l_.:._:-_.'__."___:__.___._;_:.

. Table 3: Average reward accuracy of DPO series| Table 4: Average reward accuracy of DPO series
I alignment methods using phi-2 on the Golden HH. alignment methods using phi-2 on the OASST1

| dataset. I dataset.
Proportion of noisy preferences (%) | Proportion of noisy preferences (%)
l Method 50 0 . Method (R 40
Vanilla DPO 93.19%  85.57% 73.07%  54.98% | Vanilla DPO 66.94% 62.61% 58.44% 52.42%
I cDPO 9721% 92.63% 81.05% 66.72% cDPO 67.30% 61.44% 54.87% 49.21%
rDPO 96.49% 95.73% 93.34%  84.55% I rDPO 63.95% 5947% 56.45% 45.20%
PerpCorrect-DPO  98.17% 97.05% 97.66% 96.39% PerpCorrect-DPO  71.34% 69.04% 68.27% 68.49%

Evaluated using dlfferent datasets

L._._-—.—--_.——._-~._

PerpCorrect can achieve better alignment performance.

NeurlPS 2024
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Empirical Results

Table 5: Average reward accuracy and improvements of the offline and robust alignment methods, as
well as those combined with PerpCorrect, using Llama2-7B on the Golden HH dataset.

Proportion of noisy preferences (%)

Method 10 20 30 0
DPO 0053%  82.60%  63.50%  53.15%
PerpCorrect-DPO 97.51%  96.24%  95.53%  94.92%
A +4.98% +13.62% +27.03% +41.77%
SLiC 96.70%  87.75%  7617%  58.59%
PerpCorrect-SLIC ~ 96.95%  95.02%  95.38%  94.61%
A +025% +7.27% +1921% +36.02%
PO 08.07% 92.73%  79.17%  61.64%
PerpCorrect-IPO  98.73%  97.66%  97.82%  97.56%
A +0.66% +4.93%  +18.65% +35.92%
<DPO 96.04% 90.85%  83.23%  65.60%
PerpCorrect-cDPO 98.12%  97.31%  94.97%  88.36%
A +2.08% +6.46% +11.74% +22.76%
DPO 96.65% 95.22%  93.90%  9045%
PerpCorrect-rDPO  95.99%  95.02%  94.77%  95.73%
A 066% -020%  +0.87%  +5.28%

PerpCorrect has good compatibility with other alignment methods.
DPO: [Rafailov et al., NeurlPS 2023]
SLiC: [Zhao et al.]
IPO: [Azar et al., AISTATS 2024]
cDPO: [Eric Mitchell] NeurlPS 2024
rDPO: [Chowdhury et al., ICML 2024]



Conclusion

Our research proposes a method called perplexity-aware correction
(PerpCorrect), as an effective approach for robust alignment with noisy
preferences.
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