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Large Language Models (LLMs)

LLMs have demonstrated extraordinary capabilities across a wide range of tasks.
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Table from https://openai.com/index/learning-to-reason-with-llms/



Large Language Models (LLMs)

LLMs may generate harmful and helpless content.
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“Sorry, I can not help you…”

“This is how you destroy the world…”

LLM



Noisy Preferences

Alignment methods are essential to ensure that large language models generate 
helpful and harmless content aligned with human preferences.
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Noisy Preferences

Noisy preferences in datasets can spoil the alignment.
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Motivation

Existing methods mitigate the issue of noisy preferences from the loss 
function perspective by adjusting the alignment loss based on a clean 
validation dataset.
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estimated using a clean validation set



Motivation
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How to better reduce the impact of noisy preferences on alignment?

We propose perplexity-aware correction from the data perspective 
for robust alignment which detects and corrects noisy preferences.



PerpCorrect: Perplexity-aware Correction
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Intuitively, clean preferences have lower PPLDiff values than noisy preferences.

clean preferences: 𝑥, $𝑦# , $𝑦$ = 𝑥, 𝑦# , 𝑦$ , PPL 𝑥; $𝑦# ; 𝜃 < PPL( 𝑥; $𝑦$ ; 𝜃)

noisy preferences: 𝑥, $𝑦# , $𝑦$ = 𝑥, 𝑦$ , 𝑦# , PPL 𝑥; $𝑦# ; 𝜃 > PPL( 𝑥; $𝑦$ ; 𝜃)



PerpCorrect: Perplexity-aware Correction
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(a) PPLDiff calculated by an untrained LLM.

Noisy and clean preferences 

cannot be distinguished.

(b) PPLDiff calculated by a surrogate LLM, which 
is trained with small amount of labeled data.

(c) Iteratively selecting reliable unlabeled 
data to train the surrogate LLM.

(d) Using PPLDiff calculated by surrogate LLM 
to detect and correct noisy preferences.



Robust Alignment via PerpCorrect
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Algorithm 1 Robust Alignment via Perplexity-aware Correction (PerpCorrect)

1: Input: Noisy training dataset D̃, clean validation dataset Dval, and pre-trained LLM ⇡✓ parame-
terized by ✓

2: Output: Robust alignment model ⇡✓

3: // Stage I: Supervised fine-tuning (SFT)
4: ⇡✓  Supervised fine-tuned LLM ⇡✓. (Details in Appendix C.3)
5: // Stage II: Perplexity-aware correction using the surrogate LLM
6: D̃denoised, "0

denoised
 Perplexity-aware Correction (⇡✓, D̃, Dval) (Details in Algorithm 2)

7: // Stage III: Alignment with denoised dataset
8: ⇡✓  Aligned LLM ⇡✓ using D̃denoised and "0

denoised
(Details in Appendix C.3)

Further, we select an optimal denoised training dataset to further enhance the performance of
robust alignment according to the intersection area of the two normal distributions. We denote the
intersection area of two normal distributions as the estimated NP proportion of the denoised training
dataset, i.e.,

"0PC =

Z
+ inf

� inf

min{(1� "̄)fclean(x|µ̄, �̄2), "̄fnoisy(x|� µ̄, �̄2)}dx, (15)

where "0PC calculates the ratio of noisy data points which are not detected by PerpCorrect (i.e.,
the green area enclosed by the black and red lines in Figure 2d) and the clean data points which
are mistakenly detected by PerpCorrect (i.e., the red area enclosed by the black and green lines in
Figure 2d). In this way, "0PC can efficiently calculate the NP proportion of the denoised training
dataset. We take the denoised training dataset with the smallest "0PC among multiple iterations as the
optimal one for robust alignment to boost alignment performance.

3.2 Robust Alignment

Here, we introduce how to adapt PerpCorrect to robustify various alignment methods and demonstrate
the algorithm of robust alignment via PerpCorrect in Algorithm 1. In general, the pipeline of the
robust alignment based on PerpCorrect contains three stages: SFT, PerpCorrect, and alignment. We
will first conduct SFT, following Christiano et al. [9], to boost the performance of a pre-trained LLM
by boosting its skills for specific tasks. Next, we will conduct PerpCorrect to detect and correct NPs
and output an optimal denoised training dataset D̃denoised the smallest "0PC in Eq. 15. Finally, we
can obtain an aligned LLM from the SFT model using the denoised training dataset D̃denoised via
alignment (i.e., Line 8 in Algorithm 1).

Because our proposed PerpCorrect is agnostic to alignment methods and model structures, PerpCor-
rect is applicable to robustify both online alignment methods such as RLHF (PPO) [9] and offline
alignment methods including DPO [26], SLiC [38], and IPO [3]. Besides, our proposed PerpCorrect
is compatible with existing loss-oriented robust alignment methods, such as cDPO [21] and rDPO [8],
based on the estimated proportion of NPs. Note that cDPO and rDPO require conducting compu-
tationally expensive cross-validation to tune the estimated proportion of NPs. We can efficiently
estimate the proportion of NPs by utilizing the fitted normal distributions during PerpCorrect, i.e.,
"0PC in Eq. 15. Therefore, we can combine PerpCorrect with a wide range of existing alignment
methods to achieve robust alignment with NPs.

4 Experiments

In this section, we demonstrate that our proposed PerpCorrect achieves state-of-the-art alignment
performance under different proportion of NPs and have good compatibility with other alignment
methods. In Section 4.1, PerpCorrect combined with DPO [26] achieves state-of-the-art alignment
performance than existing baselines (Section 4.1), including DPO [26], cDPO [21], and rDPO [8].
In Section 4.2, we further analyze the impact of the number of validation data and verified the
compatibility of PerpCorrect with online and offline alignment methods and robust alignment methods.
The training details and compute resources are reported in Appendix C.1.
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Empirical Results

Table 1: Average reward accuracy of DPO se-
ries alignment methods using Llama2-7B on the
Golden HH dataset.

Method Proportion of noisy preferences (%)
10 20 30 40

Vanilla DPO 92.53% 82.62% 68.50% 53.15%
cDPO 96.04% 90.85% 83.23% 65.60%
rDPO 96.65% 95.22% 93.90% 90.45%

PerpCorrect-DPO 97.51% 96.24% 95.53% 94.92%

Table 2: Average reward accuracy of PPO se-
ries alignment methods using Llama2-7B on the
Golden HH dataset.

Method Proportion of noisy preferences (%)
10 20 30 40

Vanilla PPO 96.64% 92.71% 90.21% 86.29%
cPPO 96.18% 93.63% 90.62% 88.02%
rPPO 95.92% 93.73% 92.05% 90.62%

PerpCorrect-PPO 96.38% 94.04% 93.99% 93.17%

Table 3: Average reward accuracy of DPO series
alignment methods using phi-2 on the Golden HH
dataset.

Method Proportion of noisy preferences (%)
10 20 30 40

Vanilla DPO 93.19% 85.57% 73.07% 54.98%
cDPO 97.21% 92.63% 81.05% 66.72%
rDPO 96.49% 95.73% 93.34% 84.55%

PerpCorrect-DPO 98.17% 97.05% 97.66% 96.39%

Table 4: Average reward accuracy of DPO series
alignment methods using phi-2 on the OASST1
dataset.

Method Proportion of noisy preferences (%)
10 20 30 40

Vanilla DPO 66.94% 62.61% 58.44% 52.42%
cDPO 67.30% 61.44% 54.87% 49.21%
rDPO 63.95% 59.47% 56.45% 45.20%

PerpCorrect-DPO 71.34% 69.04% 68.27% 68.49%

Datasets. We utilize two preference datasets, namely OpenAssistant Conversations (OASST1) [17]
and Golden HH [7]. The processed OASST1 dataset comprises 17,939 training samples and 951
testing samples and the processed Golden HH dataset consists of 12,066 training samples and 654
testing samples. The description and processing details of these datasets are provided in Appendix C.2.

Models. Our evaluation leverages two distinct series of open-sourced LLMs with different parameter
sizes: Llama2-7B [32] and phi-2 [20]. We acquire the checkpoints from their official repositories on
Hugging Face. The LLMs used for PerpCorrect and those for robust alignment share the same model
structure and initialization.

Baselines. We adopt vanilla DPO [26] and two robust alignment methods, cDPO [21] and rDPO [8],
as baselines. For their detailed implementation, we utilize and adapt the transformers and TRL
libraries provided by the Hugging Face community.

Metrics. In accordance with Chowdhury et al. [8], we employ the winning rate of policy generations
against the selected preferences on the test dataset as our primary metric. This metric applies to vanilla
DPO [26], cDPO [21], rDPO [8], as well as other offline alignment methods including SLiC [38]
and IPO [3]. Additionally, we utilize the winning rate of the reward model score for the chosen
preferences on the test dataset as our metric for vanilla PPO [24], cPPO [21, 34], and rPPO [8]. These
two metrics are collectively called reward accuracy.

4.1 PerpCorrect Achieves the State-of-the-Art Robust Alignment Performance

The empirical results demonstrate that our method, PerpCorrect, achieves state-of-the-art robust
alignment performance, surpassing existing baselines such as vanilla DPO [26], cDPO [21], and
rDPO [8]. This is evident across various proportions of noisy preferences " using different datasets
and LLMs.

Comparison using different LLMs. Tables 1 and 3 demonstrate the average reward accuracy
of the DPO series alignment methods on the Golden HH [7] dataset using Llama2-7B [32] and
phi-2 [20]. At a proportion of the NPs " = 40%, PerpCorrect increases the reward accuracy by
41.77% (from 53.15% to 94.92%) using Llama2-7B and by 41.41% (from 54.98% to 96.39%) using
phi-2. The empirical result validates that our proposed PerpCorrect can be used on different sizes of
LLMs and achieve better alignment performance than baselines.

Comparison on different datasets. Tables 3 and 4 demonstrate the average reward accuracy of the
DPO series alignment methods on the Golden HH [7] and OASST1 [17] datasets using phi-2 [20].
The empirical results reveal a significant discrepancy in average reward accuracy between the more
complex OASST1 dataset and the Golden HH dataset. The performance of other robust alignment
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Evaluated using different datasets

Evaluated using different series of alignment methods

Vanilla DPO: [Rafailov et al., NeurIPS 2023]
cDPO: [Eric Mitchell]
rDPO: [Chowdhury et al., ICML 2024]

PerpCorrect can achieve better alignment performance. 



Empirical Results
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Table 5: Average reward accuracy and improvements of the offline and robust alignment methods, as
well as those combined with PerpCorrect, using Llama2-7B on the Golden HH dataset.

Method Proportion of noisy preferences (%)
10 20 30 40

DPO 92.53% 82.62% 68.50% 53.15%
PerpCorrect-DPO 97.51% 96.24% 95.53% 94.92%

� +4.98% +13.62% +27.03% +41.77%
SLiC 96.70% 87.75% 76.17% 58.59%

PerpCorrect-SLiC 96.95% 95.02% 95.38% 94.61%
� +0.25% +7.27% +19.21% +36.02%

IPO 98.07% 92.73% 79.17% 61.64%
PerpCorrect-IPO 98.73% 97.66% 97.82% 97.56%

� +0.66% +4.93% +18.65% +35.92%
cDPO 96.04% 90.85% 83.23% 65.60%

PerpCorrect-cDPO 98.12% 97.31% 94.97% 88.36%
� +2.08% +6.46% +11.74% +22.76%

rDPO 96.65% 95.22% 93.90% 90.45%
PerpCorrect-rDPO 95.99% 95.02% 94.77% 95.73%

� -0.66% -0.20% +0.87% +5.28%

methods is found to be unsatisfactory on the OASST1 dataset, often not surpassing the vanilla DPO.
In contrast, our method PerpCorrect consistently maintains strong alignment performance across
varying proportions of noisy preferences. In general, our method PerpCorrect can achieve better
alignment performance than baselines across different datasets.

4.2 Ablation Study

Impact of the number of clean validation data. Table ?? illustrates the impact of the number of
clean validation data points. We conducted experiments on the Golden HH dataset using Llama2-
7B with a proportion of NPs " = 40%. The empirical results indicate that as the number of clean
validation data points increases, the performance of our method, PerpCorrect, also improves. However,
when the number is too large, the improvement in performance is not obvious, and the cost of manual
annotation significantly increases.

Compatibility with online alignment method RLHF (PPO). We adopt vanilla PPO [24],
cPPO [21, 34], and rPPO [8] as baselines. Table 2 shows the alignment performance of PPO
series alignment methods on the Golden HH [7] dataset using Llama2-7B. Although vanilla PPO
has good performance when the proportion of NPs is low, it still declines significantly when the
proportion is high. PerpCorrect maintains desirable alignment performances when the proportion
of NPs is high. Our empirical results show that PerpCorrect has desirable compatibility with online
alignment method RLHF (PPO).

Compatibility with various offline alignment methods. Table 5 presents the average reward
accuracy and improvements of original offline alignment methods compared to those combined with
PerpCorrect. Our experiments, conducted on the Golden HH dataset using Llama2-7B, reveal that
the reward accuracy of SLiC [38] and IPO [3] both significantly decrease as the proportion of NPs
increases, similar to vanilla DPO [26]. However, our method PerpCorrect enhances their alignment
performance across different proportions of NPs. Notably, IPO combined with PerpCorrect achieves
the best alignment performance. We conjecture the main reason is that the proportion of NPs in the
denoised dataset is very low and IPO performs better than other methods under a low proportion of
NPs. These empirical results demonstrate that our method has good compatibility with various offline
alignment methods.

Compatibility with robust alignment methods. Table 5 shows the average reward accuracy and
improvements of robust alignment methods compared to those combined with PerpCorrect. Our
method, PerpCorrect, can significantly enhance the performance of cDPO [21], and provide a modest
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PerpCorrect has good compatibility with other alignment methods.
DPO: [Rafailov et al., NeurIPS 2023]
SLiC: [Zhao et al.]
IPO: [Azar et al., AISTATS 2024]
cDPO: [Eric Mitchell]
rDPO: [Chowdhury et al., ICML 2024]



Conclusion

Our research proposes a method called perplexity-aware correction 
(PerpCorrect), as an effective approach for robust alignment with noisy 
preferences.
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