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Introduction

* Goal: solve the label distribution learning problem on complex
heterogeneous networks.

 Label Distribution Learning (LDL)

* Heterogeneous Graph Learning:
* Meta-path based approach
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Introduction

e Contribution:

* An end-to-end HGDL learning approach to jointly learn an optimal meta-
path graph topology and align it with nodal features for consistent message-
passing.

* Performance of HGDL is theoretically bounded.

* Empirical study has been carried out over five self-created graph datasets that
span domains of bio-medicine, scholarly network, business network, and
urban planning.
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The proposed HGDL framework. Step 1 - 3: Optimal Graph
Topology Homogenization; Step 4 - 5: Local Topology and
Global Feature Consistency-Aware Graph Transformer.
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Framework Xt

« Optimal Graph Topology Homogenization: Unlike traditional
heterogeneous graph learning methods that handle each meta-path separately, we
leveraged an attention mechanism to merge all meta-path graph topology
Information into a single dynamic graph and learn embeddings based on the

single learned dynamic graph.

 Local Topology and Global Feature Consistency-Aware Graph
Transformer: An attention mechanism is used to induce feature
topology. We then integrate it with merged graph topology to learn a
sparse graph for message passing embedding learning.

« An End-to-End HGDL Objective Function: a joint loss combining
label distribution loss (KL divergence) and attention regularization is use
ensure the diversity of learned different meta-path weights.
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Benchmarks

* Single meta-path comparison

* GCNg;: Abaseline that uses graph constructed from each meta-path to
train a vanilla GCN[1], using KL-divergence as loss function, and reports
the best meta-path result.

« GLDL: This is a label distribution learning method proposed specifically
for homogenous graph [2].

» Fused Fmbeddings from different meta-path

 HANg;: This baseline uses HAN [3] structure ( a simple attention
mechanism) to integrate embedding from different meta-paths.

 SeHGNNg;: This baseline uses SeHGNN [4], leveraging a transformer
based approach to aggregate meta-paths embedding along with KL-
divergence loss function.

 HINormery: This is a more recent heterogenous graph learning baseline
with KL-divergence loss function [5].
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Dataset Node Types # features  Edge Types # Labels

DRUG D:Drug(894)/S:Discase(454) 191 DP(4397)/DS(2704) 28
P:Protein(18877)/G:gene(20561) PG(18545)/PP(201382)

GG(712546)/DD(798316)

ACM A:Author(5810)/P:Paper(12499) 1903 AP(37055)/PC(12499) 14
S:Subject(73)/C:conference(14) PS(12499)/PF(12499)
F:Affiliation(1804) AF(30424)

DBLP  A:Author(4057)/P:Paper(14328) 8920 AP(19645)/PT(114273) 4
T:Term(8920)/C:conference(20) PC(14328)

YELP  U:User(3001)/B:Business(150346) 19 UR(3001)/RB(6990280) 9
R:Review(6990280)/T:Tip(908915) UT(3001)/BT(908915)

URBAN NR:Nature Residence(622) 155 NR-CS (14818) 10
CS:Comprehensive Service(449) NR-GL (8328)

GL:Green Leisure(202) NR-TJ (11736)

TJ:Transit Junction(161)

Table: Five dataset created and used for empirical experiments.
The table shows the details of each dataset.
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Metric used to evaluate model performance, same from normal
label distribution learning.
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« The detailed results compared with each benchmark are
shown in the paper.

« \We provide an ablation result shown on the left to confirm the
w design of active graph topology homogenization.

« Our proposed HGDL integrates information from

i1l ' different meta-paths and therefore lead to better results
compared with each single meta-path for all metrics,

I M I I _— I proving our graph topology homogenization successfully
Integrates different meta-path information through
attention mechanism.

—

Measure

i

CoD CAD CHD CLD IND KL
I p; =apa 0 p; =afa B ps; =apspa B HGDL

Figure 3: an ablation result of HGDL methods versus its
variants on each single meta-path. All metrics except
IND is better for lower values.
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Key Takeaway

 Success of HGDL shows the importance of learning a proper graph topology
before message passing.
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Thanks for listening!
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