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Graph Neural Network
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RelLU Message Passing Neural Network (Gilmer et al 2017)
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Current Opinion in Structural Biology

Garg V. (2024): Generative Al for graph-based drug design: Recent advances and the way forward

- Unlike the WL test that strives to expose what GNNSs cannot do, we aim to understand what they can.
- WL formalism relies on Injective hash functions; in contrast, several successful GNNs employ RelLU

activations that violate injectivity.




Motivating questions

1. What class of functions can be represented by ReLU GNNSs?

2. How does the number of linear region (geometric complexity) vary
with choice of aggregation and update functions?

3. What complexity tradeoffs exist for models of comparable
expressivity?

4. What decision boundary emerges for node and graph classification

tasks?



Tropical Algebra and Geometry

A powerful tool to study the algebraic geometry and combinatorics of continuous piecewise linear functions

Basic 1dea:

- Form a semi-ring T = R U {—o0} with 2 operator: tropical sum a @ b = max(a, b) and tropical multiplication
a(®Ob=a+D>b.

- We can then define polynomials and rational functions on T and study their algebraic geometry and
combinatorics.

Zhang et al. 2018 used tropical algebra to show that ReLU FNNs are equivalent to continuous piecewise
linear map (CPLM), establishing the link between tropical geometry and deep learning.

This has motivated related works and provided further understanding of ReLU FNNs. We want to
extend the link to GNNSs.

Liwen Zhang, Gregory Nalitzat, and Lek-Heng Lim. Tropical geometry of deep neural networks. (2018)



Key results

Theorem 1: The set of functions represented by ReLU MPNNs and ReLU FNNs are the same: they can
learn any continuous piecewise linear function.

But there Is a discrepancy in practice: often ReLU MPNNs outperform ReLU FNNSs in learning.

Previously Message layers | Feedforward layers | Learnable parameters
Deep NN in [19] None [log,(r)] + 1 O(rm)
Deep NN in [83]] None [Tog,(m)] + 1 O(rm)
New (in this work)
Local (Algorithm 2 'log,(r/m)| + 5 O(rm)
Global (Algorithm [log,(r)] +1 3 [log, (r)] + 2 O(rm)
Constant (Algorithm 2 7 Olmr™<)
Hybrid (Algorithm|9) | I O(rm)

Table 1: Complexity of representing any tropical signomial function (TSFs) f : R™ — R consisting
of r tropical monomials with different architectures. One more layer 1s required to compute any
tropical rational signomial map (TRSM). The four new methods introduced here construct a graph
(based on m and r) and leverage message passing to efficiently compare these monomials.



Key results (cont.)

For a CPLM f, we define 1ts linear degree to be the least number of connected regions such that f restricted to
this region 1s affine. This can be used to measure the geometric complexity of a deep learning model.

Theorem 2: We obtain the lower bound for the maximum number of linear degree of a ReLU MPNN
architecture .
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We use the idea of space folding and hyperplane arrangement
Introduced In Montufar et al. 2014

(b) (c)
Montufar et al. 2014

Guido F Montufar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio. On the number of linear regions of deep neural networks. (2014)



Key results (cont.)

We use tools from tropical geometry and results from Zhang et al. 2018 to analyze the upper bound for the linear
degree, thus completing the story.

Theorem 3: We obtain a general upper bound for the linear degree of ReLU MPNN .

- This i1s a first general bound for geometric complexity of ReLU MPNNs under some mild assumptions.
- Recover existing upper bound for ReLU FNNs and GCNs
- New bounds for popular GNNSs: e.g. GraphSAGE and GIN.

New insight: Coordinate-wise max Is more “expressive” than sum.



Wanna know more?

Theoretical contributions of this work

Visit our poster:
Wed 11 Dec 11 a.m. PST — 2 p.m. PST

Characterizing the class of functions learned by ReLLU MPNNs:

Equivalence with ReLU FNNs, TRSMs and CPLMs Proposition|1
Estimating the number of linear regions, and complexity tradeoffs:

First general lower bound for ReLU MPNNs Theorem|:

First general upper bound tor ReLU MPNNs Theorem

Max aggregation has greater geometric complexity than sum
Recovery of existing upper bounds for FNN and GCN
New upper bounds for GraphSAGE and GIN

Proposition

Corollary] 1|,

Corollary j

ol

New ReLLU MPNNs and complexity tradeoffs:

New architectures that can all learn CPLMs, and their tradeofts

Proposition

Characterizing the decision boundary:
Decision boundary of ReLLU MPNNs for graph classification
Decision boundary of ReLU MPNNs for node classification

Proposition
Proposition
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