
Memory-Efficient LLM Training with Online Subspace Descent
Online Subspace Descent

● torch.svd is slow
● single-step backward() is fast
● P updates can be executed in parallel, no overhead
● Cost of SVD can’t be masked out

System Advantage
Why is it Faster?

Experiments
TLDR: works better than Galore

● 7B LLaMA model 
● SS 256
● C4 dataset for 10K steps
● Perplexity Lower the better

Table 2: GLUE on 7B 
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Table 1: Perplexity and Wall Clock Time for 7B 

Common Optimizers

A Natural Update Rule

TLDR: 
● AdamW is good, but (memory) expensive 
● A general online subspace framework for memory efficient optimization
● Subspaces can be updated arbitrarily – via hamiltonian view

W/O  Projection

Pretraining LLaMA 1B SS 256, 10K steps,  AdamW8bit 

Hamiltonian + Descent

With Projection


