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. 1. Introduction G kEE
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e Our problem setup [Simple Bilevel Optimization]: Xg: minimizers of g(x)
g": minimal of g(x)

' — ' *: minimal of f(x) over X,
I)pelélf(x) s.t. X € X; = arg min g(z) (1) &f f(x) g

« Minimize the upper-level objective over the solution set of a lower-level problem.
« Z.feasible set; convex & compact with diameter D.

 f and g: upper-level and lower-level objective functions.
« Assumption 1: f, g are convex and L¢, L,-smooth functions.
« Assumption 2: f, g are convex and Cy, C,-Lipschitz continuous functions.
« ahierarchical structure! ¢  many applications in machine learning
« Lifelong learning, lexicographic optimization...
« Challenge: X is not explicitly given.
 Thus methods for constrained problems projected gradient method and Frank-Wolfe
method are not applicable.



. D1. Introduction
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Our contribution:

Fundamental Difficulty of Simple BiO problems: Prove the intractability of any zero-

respecting first-order methods to find absolute optimal solutions.

Near-Optimal Methods: Propose a novel method with near-optimal rates for finding

weak optimal solutions in both nonsmooth and smooth Simple BiO problems.
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Absolute optimal solution: |[f(X) — f*| < €7, g(X) — g* < €.

Weak optimal solution:

fER)—f"<e,9(F) —g" < ¢,
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A ’]I Hardness result: absolute optimal solution is not obtainable’ %%

« Our result: It is generally intractable for any zero-respecting first-order method to
absolute optimal solutions.

Theorem 4.1. For any first-order algorithm A satisfying Assumption 3._4|Ihat runs for T iterations
and any initial point x, there exists a (1, 1)-smooth instance of Problem (|I) such that the optimal
solution x* Sarisﬁes |xo —x*||2 < Land |f(xo) — f*| > 45. For the iterates {x;.}]_, generated
by A, the following holds:

f(xk) = f(x0), V1I<EkEZT.
Theorem 4.2. For any first-order algorithm A satisfying Assumption[3.4|that runs for T iterations
and any initial point Xy, there exists a (1, 1)-Lipschitz instance of Problem (|I) and some adversarial
subgradients {0 f (x.), 0g(xy) }.Z, such that the optimal solution x* satisfies | xo — x*|2 < 1 and
|f(x0) — f*| = %. For the iterates {x) }]_, generated by A, the following holds

f(xk) = f(x0), V1I<EkE<ZT.

4 )
zero-respecting first-order method : A generates test points {x;};s¢ With

supp(X¢4+1) € supp(Xp) U ( U supp(9f (x5)) U supp(ag(xs)))>
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° .]I Hardness result: absolute optimal solution is not obtainable’ LEES

* Proof idea: we need to construct a “hard case”.
« Key concept: “first-order zero-chain” (Definition 3.1)
* Applying zero-respecting first-order method to a first-order zero-chain with zero

Initialization: only one component of x;, becomes non-zero in each iteration.
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° ! Near-optimal method for finding weak-optimal solutions LREE

« Due to the intractability of obtaining absolute optimal solutions, we focus on
proposing first-order methods for finding weak-optimal solutions: f(X) — f* < €, g(X)

— g < €.
« Stepl: reformulate the original simple BIO problem to a functionally constrained
problem.

min f(x),s.t.g(x) = gx) —g*" <0 (2)

where g* is an approximation of the lower-level problem’s optimal value g*

« Step2: Reduce Problem (2) to finding the smallest root of an auxiliary function (3),
whose function value is defined by a discrete minimax problem. Such reformulation
IS introduced in Nesterov’s Lectures on convex optimization.

P (6) = min{p(t, x) = max{f(x) = £, g} (3)

Nesterov, Yurii. Lectures on convex optimization. Vol. 137. Berlin: Springer, 2018.
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° ﬁ Near-optimal method for finding weak-optimal solutions LREE

« To solve the smallest root of y*(t), we adopt a bisection procedure, and uses a
first-order subroutine M to estimate the function value of y*(t) for a given t.

Algorithm: Functionally Constrained Bilevel Optimizer (FC-BiO)
Require: desired accuracy €, total number of iterations T, initial bounds 4, u,
and first-order subroutine M.

Set N = [1og2’27‘ﬂ,1( =T/N. Set X=x,.

for k=0,---,N—1 do
Set t =",
Solve with the subroutine (ﬁ(t),tﬁ*(t)) = M(X,t,K). Set X =R
if P*(t) 2% then set ¢ =t.

else set u=t.
End for
Return X =X(,) as the approximate solution.
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o l Near-optimal method for finding weak-optimal solutions LEES:

first-order subroutine M: gleig{l/)(t, x) == max{f(x) — ¢, g(x)}}

Lipschitz objectives: smooth objectives:

Subgradient Method Generalized Accelerated Gradient Method

L
Xp+1 = Mz (X — 105 (t, X)) Xperr = argmin max {f(yi) +(Vf (i), x = yi) + 5 l1x = yellz — ¢

L
J) +(Vg(yr), x —yi) + > lx — v 1153

Xr+1 Can be further written in the form of a projection.
(Proposition 5.2)
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« Convergence rate of our FC-BIO method (Theorem 5.3, 5.4):

* Lipschitz case: \
_ C? C2
0<max{ };, ‘Z}Dz)
Ef Eg

* Smooth case: Near-optimal rate

) \/L*f\/* in both settings O
max

Where D is the diameter of Z C¢, Cy, Lf, L, are

Lipschitz/smooth constants, and O hldes
wgarithmic terms /
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.' IV. Numerical experiment @11z

& [ i | i I T ~&-FC-Bi0=
~©~FC-BiO"?
2 == AGM-BiO
10 1 ==PB-APG
3= Bi-SG
—t9=3-IRG

- CG-BiO 1

¥ 1 | e Bisec-BiO 1
‘ Jx) = 5IxI3, 9(x) = 5ll4x ~ b,

e N minimum norm solution of Linear Regression.
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Figure 1: The performance of Algorithm [I|compared with other methods in Problem (TI).
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Figure 2: The performance of Algorithm [[|compared with other methods in Problem (12) 10000 d atap oints. 40000+ features
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Thank you!
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