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Ⅰ.  Introduction

• Our problem setup [Simple Bilevel Optimization]:

min
𝐱∈𝒵

𝑓 𝐱 s. t. 𝐱 ∈ 𝒳𝑔
∗ = argmin

𝐳∈𝒵
𝑔 𝐳 1

• Minimize the upper-level objective over the solution set of a lower-level problem.

• 𝓩: feasible set; convex & compact with diameter 𝐷.

• 𝒇 and 𝒈: upper-level and lower-level objective functions. 

• Assumption 1: 𝑓, 𝑔 are convex and 𝐿𝑓, 𝐿𝑔-smooth functions.

• Assumption 2: 𝑓, 𝑔 are convex and 𝐶𝑓, 𝐶𝑔-Lipschitz continuous functions.

• a hierarchical structure!  many applications in machine learning

• Lifelong learning, lexicographic optimization…

• Challenge: 𝒳𝑔
∗ is not explicitly given. 

• Thus  methods for constrained problems projected gradient method and Frank-Wolfe 

method are not applicable.

𝒳𝑔
∗: minimizers of 𝑔(𝑥)

𝑔∗: minimal of 𝑔 𝑥
𝑓∗:minimal of 𝑓 𝑥  over 𝒳𝑔

∗



Ⅰ.  Introduction

• Our contribution:

• Fundamental Difficulty of Simple BiO problems: Prove the intractability of any zero-

respecting first-order methods to find absolute optimal solutions.

• Near-Optimal Methods: Propose a novel method with near-optimal rates for finding 

weak optimal solutions in both nonsmooth and smooth Simple BiO problems.

• Absolute optimal solution: 𝑓 ො𝑥 − 𝑓∗ ≤ 𝜖𝑓, 𝑔 ො𝑥 − 𝑔∗ ≤ 𝜖𝑔.

• Weak optimal solution: 𝑓 ො𝑥 − 𝑓∗ ≤ 𝜖𝑓, 𝑔 ො𝑥 − 𝑔∗ ≤ 𝜖𝑔.



• Our result: It is generally intractable for any zero-respecting first-order method to 

absolute optimal solutions.

Ⅱ.  Hardness result: absolute optimal solution is not obtainable

supp 𝐱𝑡+1 ⊆ supp 𝐱0 ∪ ራ

0≤𝑠≤𝑡

supp 𝜕𝑓 𝐱𝑠 ∪ supp 𝜕𝑔 𝒙𝑠 )

zero-respecting first-order method : 𝒜 generates test points 𝐱𝒕 𝑡≥0 with



• Proof idea: we need to construct a “hard case”.

• Key concept: “first-order zero-chain” (Definition 3.1)

• Applying zero-respecting first-order method to a first-order zero-chain with zero 

initialization: only one component of 𝑥𝑘 becomes non-zero in each iteration.

Ⅱ.  Hardness result: absolute optimal solution is not obtainable



• Due to the intractability of obtaining absolute optimal solutions, we focus on 
proposing first-order methods for finding weak-optimal solutions: 𝑓 ො𝑥 − 𝑓∗ ≤ 𝜖𝑓, 𝑔 ො𝑥

− 𝑔∗ ≤ 𝜖𝑔.
• Step1: reformulate the original simple BiO problem to a functionally constrained 

problem.

where ො𝑔∗ is an approximation of the lower-level problem’s optimal value 𝑔∗

• Step2: Reduce Problem (2) to finding the smallest root of an auxiliary function (3), 

whose function value is defined by a discrete minimax problem. Such reformulation 

is introduced in Nesterov’s Lectures on convex optimization. 

Ⅲ.  Near-optimal method for finding weak-optimal solutions

min 𝑓(𝑥) , 𝑠. 𝑡. ෤𝑔 𝑥 ≔ 𝑔 𝑥 − ො𝑔∗ ≤ 0 2

𝜓∗ 𝑡 ≔ min
𝑥∈𝒵

𝜓 𝑡, 𝑥 ≔ max 𝑓 𝑥 − 𝑡, ෤𝑔 𝑥 3

Nesterov, Yurii. Lectures on convex optimization. Vol. 137. Berlin: Springer, 2018.



Ⅲ.  Near-optimal method for finding weak-optimal solutions

Algorithm: Functionally Constrained Bilevel Optimizer (FC-BiO)
Require: desired accuracy 𝜖, total number of iterations 𝑇, initial bounds ℓ, 𝑢, 
and first-order subroutine ℳ.

Set 𝑁 = log2
𝑢−ℓ

𝜖/2
, 𝐾 = 𝑇/𝑁. Set ത𝐱 = 𝐱0.

for 𝑘 = 0,⋯ ,𝑁 − 1 do

Set 𝑡 =
ℓ+𝑢

2
.

Solve with the subroutine ො𝐱 𝑡 , ෠𝜓
∗ 𝑡 = ℳ ത𝐱, 𝑡, 𝐾 . Set ത𝐱 = ො𝐱 𝑡 .

if ෠𝜓∗ 𝑡 ≥
𝜖

2
then set ℓ = 𝑡.

else set 𝑢 = 𝑡.
End for
Return ො𝐱 = ො𝐱 𝑢 as the approximate solution.

• To solve the smallest root of 𝜓∗ 𝑡 , we adopt a bisection procedure, and uses a 

first-order subroutine ℳ to estimate the function value of 𝜓∗(𝑡) for a given 𝑡.



Ⅲ.  Near-optimal method for finding weak-optimal solutions

smooth objectives: 

Subgradient Method

𝐱𝑘+1 = Π𝒵 𝐱𝑘 − 𝜂𝜕𝐱𝜓 𝑡, 𝐱𝑘

Generalized Accelerated Gradient Method

𝐱𝑘+1 = argmin
𝑥∈𝒵

max {𝑓 𝑦𝑘 + ∇𝑓 𝑦𝑘 , 𝑥 − 𝑦𝑘 +
𝐿

2
𝑥 − 𝑦𝑘 2

2 − 𝑡

෤𝑔 𝑦𝑘 + ∇ ෤𝑔 𝑦𝑘 , 𝑥 − 𝑦𝑘 +
𝐿

2
𝑥 − 𝑦𝑘 2

2}

𝐱𝒌+𝟏 can be further written in the form of a projection. 

(Proposition 5.2)

first-order subroutine ℳ: 

Lipschitz objectives: 

min
𝑥∈𝒵

𝜓 𝑡, 𝑥 ≔ max 𝑓 𝑥 − 𝑡, ෤𝑔 𝑥



• Convergence rate of our FC-BiO method (Theorem 5.3, 5.4):

• Lipschitz case:

෨𝒪 max
𝐶𝑓
2

𝜖𝑓
2 ,
𝐶𝑔
2

𝜖𝑔
2 𝐷2

• Smooth case:

෨𝒪 max
𝐿𝑓

𝜖𝑓
,

𝐿𝑔

𝜖𝑔
𝐷

Where 𝐷 is the diameter of 𝒵 𝐶𝑓, 𝐶𝑔, 𝐿𝑓, 𝐿𝑔 are 

Lipschitz/smooth constants, and ෨𝑂 hides 
logarithmic terms

Near-optimal rate
in both settings

Ⅲ.  Near-optimal method for finding weak-optimal solutions



minimum norm solution of Linear Regression. 

400 datapoints. 700+ features. 

Overparameterized Logistic Regression

10000 datapoints, 40000+ features.

Ⅳ. Numerical experiment



Thank you！
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