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Preliminary

« Schrodinger equation under non-orthogonal basis
H(k)vpk = EqiS(K)vng

where Hig jg = ($ia|H|9jg) and Siq jp = (Pia|Djp)-

» DFT Hamiltonian as a function of molecular structure { R }
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Related works

« SchNOrb, PhiSNet, DeepH, DeepH-E3, QHNet,

Additional properties of DFT Hamiltonian: -
{v:it  mo

A

Self-consistency

Incorporate self-consistency: DFT
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Motivation

Intertwining DFT computations with the loss function during.

4

Incorporate self-consistency bypassing DFT 777
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Model architecture



Deep equilibrium model (DEQ): z* = f(x,z*)

Hamiltonian solver rather than Hamiltonian predictor
Hamiltonian predictor: H = f(Z,R)
Hamiltonian solver: H* = f(Z,R,H")
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Injection of Hamiltonian and overlap matrix

- Diagonal reduction

- Matrix element between atom i and j of single-electron operator represented in the
atomic orbitals {®}is T, ;, = (@ﬂ@@;)

- Wigner—Eckart theorem (jm|T{®|j'm’y = {'m'kq|im)(j | T™® || /'y ensures that there exists a set
of T-independent coefficients Q, s.t.  nl ==Y 741 @, Is injective and satisty
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Results

MD17 Dataset Model  H[10°E,]] €[l070E,]] «[10-2]%}
QHNet 10.79 33.76 99.99
Water
DEQHNet 36.07 335.86 99.99
QHNet 2091 81.03 99.99
Ethanol  hEOHNet 18.73 106.94 100.00
QHNet 21.52 82.12 99.92
Malonaldehyde g yNe 17.97 93.79 99.90
Urac] QHNet 20.12 113 44 99.89
ac DEQHNet 15.07 107.49 99.89
QH9
H[107°Ey] | -6 -2
Dataset Model diagonal non-diagonal all cH07PER] L 9 107711
. QHNet 11121 73.68 76.31 798.51 95.85
QHO-stable-id  pEoHNet  96.43 58.75 6142  4383.10 99.84
QHNet  111.72 69.88 72.11 644.17 93.68
QHO-stable-ood  LEAHNet  81.01 51.66 5323 5657.07 99.80
OHO-dynamic.geo  QHNet  149.62 92.88 96.85 834.47 04.45
y 8%  DEQHNet  84.97 60.04 6214  1864.06 99.92
QHNet  416.99 153.68  173.92  9719.58 79.15

QHO-dynamic-mol - pEOHNer  210.76 9718 10580  4625.88 99.80




Conclusion

The Hamiltonian's iterative qualities are often neglected by standard machine learning approaches for its direct prediction.
Our approach integrates DEQs with off-the-shelf ML frameworks, leveraging node features derived from the Hamiltonian
and overlap matrix to harness these iterative aspects.

Traditional machine learning models primarily serve as Hamiltonian predictors, and while recent self-consistency
integrating frameworks aim to refine training, they incur high computational costs. DEQH model distinguishes itself by
acting fundamentally as a solver, iteratively determining the Hamiltonian with the deep equilibrium model’s fixed-point
capabilities. This intrinsic self-consistency and computational efficiency render DEQH model a scalable approach for
precise quantum state prediction without a significant increase in complexity.

We have benchmarked DEQHNet against the MD17 and QH9 datasets, demonstrating that the incorporation of
Hamiltonian self-consistency can significantly enhance predictive accuracy.

We conduct an ablation study on DEQHNet, and present conjectures regarding the efficacy of networks that incorporate
DEQs for the task of learning Hamiltonians.



Thank You!



	Infusing Self-Consistency into Density Functional Theory� Hamiltonian Prediction via Deep Equilibrium Models
	Outline
	Preliminary
	Related works
	Motivation
	DEQH
	Injection of Hamiltonian and overlap matrix
	Results
	Conclusion
	Thank You!

