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On-Device Personalization of T2l Diffusion Models

Task Definition

* We aim to enable on-device personalization of T2I| diffusion models, by fine-tuning models on the mobile devices
with user-specific images for customized generation.

* On-device personalization can make the entire user experience all-the-more personal and help protect users’
privacy since personal information remain solely on the device.
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On-Device Personalization of T2l Diffusion Models
Challenges

* The challenge of on-device learning stems from limited computational resources of end device,
particularly in terms of memory 1/0.

* Existing PEFT methods are limited in extremely low memory resources as they require backpropagation over
large diffusion models and do not reduce memory usage from loading model weights.
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LoRA personalization with Hollowed Net

Motivation
* We find that the blocks around the center of the diffusion U-Net are less involved in the personalization.

* Building on this insight, we design Hollowed Net, which can temporarily excluding these less significant layers
during fine-tuning to reduce peak memory usage.
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LoRA personalization with Hollowed Net

Training w/ Hollowed Net

* We propose two-stage fine-tuning strategy:
1. Pre-computing intermediate activations of the original diffusion U-Net
2. Fine-tuning the Hollowed Net using the pre-computed activations
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LoRA personalization with Hollowed Net

Inference w/ Personalized LoRA

* Hollowed Net does not need to be held during inference, by transferring personalized LoRA parameters
to the original U-Net.

* We sequentially execute two inference paths, respectively corresponding to each stage of fine-tuning.
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Experimental Results
Comparison with Full / LoRA FT

* We conduct experiments with 131 subjects and demonstrate that Hollowed Net achieves high-fidelity personalization
results comparable to Full FT while requiring 77% (12.74GB) less GPU memory.

* The required memory for Hollowed Net fine-tuning is only 11% (390MB) more than needed for inference.

Method # of Parameters Training Memory DreamBooth CustomConceptl0]

Base  LoRA Peak Comp. w/ Inf. DINO CLIP-1 CLIP-T DINO CLIP-1 CLIP-T

2760 0.663  0.802 0.302 0.605  0.773 0.302

Full FT 866M ] 16.62GB +376% 10013 £0.007  +0.002 10005  +£0.006  +0.002
LoRA FT . 23 : 0.658  0.806  0.299 0.603 0773  0.302
(r=128) 866M  27M 2-23GB 0% 10.001 j:D.DG;: +0.002 :D.jun;s j:0.00; j:D?DOQ
LoRA FT 1R 190 0.516  0.738 0.314 0.522  0.737 0.305
(r=1) 866M 207K 4.84GB +39% +0.011  +0.003  +0.001 10.008  £0.005  £0.001
Hollowed Net o, 50y 3.88GB +11% 0.660 0.805  0.300 0.603  0.773  0.302

(Ours) +0.011 +0.006 +0.001 +0.007 +0.005 +0.002




Experimental Results

Qualitative Results

* Hollowed Net effectively captures the visual details of the target subjects, while maintaining high text-image
alignment for different types of applications including property modification, recontextualization, accessorization,
and artistic rendition.
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Experimental Results

Fractions of Hollowed Layers

* We find that the model’s capacity to preserve subject fidelity remains comparable to or slightly better than
LoRA FT until around 39.2% of layers are hollowed.

* Users can adjust the fraction of hollowed layers to control the trade-offs between performance and memory
requirements, depending on the target application and resources.
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