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Recommendation Loss
Pointwise Loss (e.g., BCE and MSE)
• Treats recommendation as a binary classification or regression problem
• Applied to each positive and negative instance separately, i.e., pointwise score 𝑓(𝑢, 𝑖)

where    is the item set,    is the positive item set of user 𝑢 ,          are activation functions.u , + −

1: pos. 0: neg.
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Pairwise Loss (BPR)
• Treats recommendation as learning a partial order among items
• Applied to each positive-negative item pair, i.e., pairwise score 𝑑𝑢𝑖𝑗 = 𝑓(𝑢, 𝑗) − 𝑓(𝑢, 𝑖)

where    is activation function. 

1: pos. 0: neg.

0.8: pos. -0.7: neg.>
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Softmax Loss
Softmax Loss (SL)
• Maximizes the probability of recommending positive items
• Ranks positive items higher than all negative items

ranking loss

0.8: pos. -0.7: neg.  & > -0.3: neg.

𝜏 : temperature
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DCG Surrogate Loss
Q: Why pairwise perspective?

A: Only pairwise loss has the potential to be interpreted as a surrogate loss for ranking 
metrics, such as DCG (Discounted Cumulative Gain) and MRR (Mean Reciprocal Rank).

In fact, we have the following inequalities (omitting irrelevant constants):

where          is the ranking position of item 𝑖 according to user 𝑢 ’s preference, and      is 
the Heaviside step function.
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Limitations of Softmax Loss

Limitation 1: SL is not tight enough as a DCG surrogate loss.

• The gap between            in DCG and its surrogate activation                   in SL is 
significant when       increases from 0.

• Leading to suboptimal accuracy.

Limitation 2: SL is highly sensitive to false negative noise.

• The gradient is exponential w.r.t.         , while false negatives often have large       

• Leading to poor noise resistance and robustness. 

exp is NOT suitable for SL !!!



Pairwise Softmax Loss
Our work: Pairwise Softmax Loss (PSL), A general family of losses, which replace exp in 
SL with other surrogate activations    , and adjust the position of temperature : 

① Accuracy: 
Tighter surrogate for ranking metrics

② Noise Robustness
More moderate gradient 

distribution



PSL = BPR+DRO

η

Training 
Distribution

Test
Distribution

Worst-case
Distribution

A set of perturbed distributions
within a certain divergence from the
training distribution

DRO (Distributionally Robust Optimization):

A robust optimization framework against distribution 
shifts in out-of-distribution (OOD) scenarios.

• DRO optimizes for the worst-case perturbed 
distributions.

③ PSL is a DRO-empowered BPR loss

• PSL has better OOD robustness compared to BPR.

• This theorem establishes a theoretical connection
among pairwise losses.



Experiments
IID setting (Accuracy) OOD setting (OOD Robustness)

Noise setting (Noise Resistance)

Metrics: NDCG@20, Recall@20
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