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Backgrounds

O Teaching recognized as a pervasive mechanism for disseminating knowledge within human society,
has found extensive application Iin contemporary deep learning methodologies.

O It serves as a cornerstone for various techniques such as knowledge distillation, data distillation,
model compression, and machine teaching, facilitating optimal training control.

O Recent investigations into pedagogy have illuminated the integration of large language models and
multi-agent systems into educational frameworks.

Interactive teaching's understanding

Loss Landscape

¢ Interactive teaching methods like co-teaching update parameters by
reducing high loss values In the landscape.

‘ Cutting PIanE—

¢ By actively Involving two teachers, models In interactive framework 4

learn from each other’s strengths through a collaborative filtering
mechanism and focus on minimizing loss examples.
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Introduction

PROCESSING SYSTEMS

O The underlying optimization principles and convergence of iInteractive teaching lack theoretical
analysis, and co-teaching serves as a notable prototype in this regard.

O In this paper, we discuss Its role as a reduction of the larger loss landscape derived from Sharpness-
Aware Minimization (SAM).

O Then, we classify It as an Iterative parameter estimation process using Expectation-Maximization.
The convergence of this typical Interactive teaching Is achieved by continuously optimizing a
variational lower bound on the log marginal likelihood.

Our optimization 3 . \

Orv1 = 0¢ — UVL(f9t+s' Dgt) Or+1 =0 — nVL(gg+£, l—);)

¢ To further enhance Interactive teaching's performance, we
Incorporate  SAM's strong generalization Information Into
Interactive teaching, referred as Sharpness Reduction
Interactive Teaching (SRIT). This integration can be viewed as
a novel sequential optimization process.

¢ We validate the performance of our approach through
multiple experiments.

Figurel: Interactive teaching, Sharpness Reduction Interactive
Teaching (SRIT), the plane in the figure represents the loss
landscape, which gradually becomes flat during the iterative

optimization process due to the receipt of flat gradient
Information cues from each other.
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Theoretical Analysis

¢ Our core assumption Is that the cleanliness of the data distribution serves as a latent variable, as It
remains unknown within the training dataset.

¢ Based on this assumption, the interactive teaching process can be effectively exemplified as a unique
type of parameter iteration within the EM framework.

¢ This perspective provides a probabilistic modeling-based explanation for the Iteration and
convergence of Interactive teaching, such as co-teaching.

The EM process

Proposition 4.1. Given the training dataset D = {X; = (x;,y;) },, which contains noisy samples,
and assuming the samples are independent, we define the hidden variable Z. = 1 to indicate
that the c-th sample is a cleaner sample, meaning it has a lower loss value compared to noisy
data. 7 = 7J U Z9 = {Z.V | represents the set of hidden variables for all samples, and the
corresponding latent distribution is denoted as q(Z). The joint probability of p(X;, Z.|0¢,0,)
is obtained by simultaneously updating neural networks f and g for X; and Z.. The logarithm
likelihood of the observed data D has the following lower bound L:

(X??v ZC|9f7 99)
q(Z.)

\12

L(0s,0,,q) = ) log ~ (12)

:1 C:

the EM algorithm approximates the maximization of log p(D|0¢,0,) by maximizing this lower bound
L(0¢,0,,q). Specifically, the EM iteration process for the interactive teaching paradigm is as follows:

E-step:
Q0r,05”) =Es1p 00 4, logp(Z], D10, 057)], (13)

QUOY),05) =By p g oo llogp(22, D6}, 6,) (14)

The subscript ZJ|D, 6’?), 0, (or Z9|D, 0y, 95(;) ) of the expectation represents the corresponding set
of low-loss samples selected by network f (or g) and is used to update network g (or f).

M-step:

901(1 Qnew

9}“1) = arg max Q(ng), 0,), (15)
Of

6’5(;”1) = arg max Q(Qf,é’gt)). (16)
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Solutions

¢ Since the convergence of the EM algorithm guarantees only local optima, while SAM can flatten

the loss landscape and effectively alleviate local optima, favoring global optima, we incorporate SAM
Into the Interactive teaching process, which referred as Sharpness Reduction Interactive Teaching

(SRIT).

The Key steps

(1) For the first level, we start by screening the required low-loss dataset minz £(fg, D).

(2) For the second level, we transter the loss information to the counterpart model for SAM optimiza-
tion: 0* = argminy max; £(gp+c, D).

The first step estimates the direction of the change in the network weights €(6+) and €(6,,), and then
computes G ¢ and G,

Gt =Vo,L(f9,Dy)lo,+e(0,): Gg = Vo, L(90,Dy)la, +e(0,): (17)
VoLl VoLp (96)
where €(A;) = p———2 o 7, €(0g) = p TR
Hveﬁf;g(fe)| . Hvaﬁg’jf(ge)Hz

The second step involves updating the parameters of networks f and g based on the estimated
gradients.
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Algorithm & Experiments /4

Algorithm 1: Sharpness Reduction Interactive Teaching (SRIT)

Input: Initial network parameters 6, , 0,,, learning rate 7, fixed parameter 7, iteration counts 7}

Table 1: Test accuracy (%) on five datasets. The best results are highlighted 1n bold.

|
l
|
| : : : Noise type Symmetric. Pairflip. Tridiagonal. Instance.
and 1},,,x, maximum iteration count V., pre-defined constant p. i Noise ratio 0% 40% 20% 40% 20% 40% 20% 40%
Output: Updated network parameters 6 ¢ and 0,,. i MNIST
1 for7T =1to1,,,x do : Co-teachin 97.50  94.96. 95.49 91.54 96.61 92.76 95.90 91.23
2 Shuffle the training set D (noisy dataset); ! ] ME | 4006 +0.07 +0.11 +0.15 +0.06 +0.09 +0.05 0.8
3 for N =1 to Ny . do ! SRIT 9942 99.19 | 9935 98.14 | 9947 98.75 | 99.43 98.03
4 Sample a mini-batch D from D; [ 10.03 10.03 10.02 10.07 =10.03 10.05 +0.02  =0.10
5 Dual-level optimization: The first level of loss information exchange. ! e 32CIFA%I 397 S S
6 Compute the loss of network f on D and obtain D f: . i Co-teaching | " 0 Lo1s 1008 S04 007 Qo017 Lo1r  d0os
Df — arg mmD, |D’|>R(T)|D| ﬁ(f D) //Sample R( ) . |D‘ small-loss inStanCGS; | SRIT 85.64 79.83 85.10 76.95 85.39 78.90 84.77 74.07
7 Compute the loss of network g on D and obtain D i == s io.?j}IF AR:I?(}).(IF oL =Sib =S80 =Sk
Dy = arg ming. p> pery 5| £(9. D) //sample R(T') - |D| small-loss instances; | Cotench 5021 4240 | 4827 3474 | 5032 3878 | 4974 3857
8 Dual-level optimization : The second level of sharpness element exchange. ! O-teathing | 4023 +0.16 +0.11 +0.13 +0.19 +0.16 +0.18  Z0.12
X VeLp (fo) VoLrp (g0) ! 59.66 50.57 | 57.16 3582 | 59.07 4227 | 59.66 40.36
) Update €(0) = pHV T )H2 and €(0y) = pHV f(g )H : St +0.16  $0.21 +010  $0.16 +0.15 +0.22 +0.16  +0.18
0Dy (o oL (90 | FMNIST
10 Compute the approximate gradient for network f: Gy = Vo, L(fo,Dy)lo, +e(0,): ! Co-teaching | 2113 87:99 [ 89.83 8544 [ 90.42 86.09 | 90.27 85.63
11 Compute the approximate gradient for network g: G4 = Vg _L(go, D Flo,+eco,)> ! 320293 :StSO{,]’g? ;t;;% :St;];zs ;tlogzl :St;‘g‘; ;tloﬁ :Stgll]Sz
. . o . : . . . . . . . :
12 Update the network parameters of f using grad}ent descent: 0y = 0y — NGy, _ SRIT I e . S . Ty Sy dones
13 Update the network parameters of g using gradient descent: 6, = 0, — nG; ! SVHN
14 | end ' Coteaching | 0183 8872 [ 9149 8509 | 9216 8751 | 91.26 8633
15 Compute R(T) — 1 — min {17 7_} ! i ng +0.08 +0.10 +0.10 +0.15 +0.10 +0.13 +0.18 +0.23
L | SRIT 9495 93.06 | 9434 8937 | 9466 91.56 | 9445 90.50
16 end | +0.05  +0.05 +0.08 +0.20 +0.05 +0.12 +0.08  0.10
i
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Thank you!
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