..‘.T,.%;.\.‘o
ﬁ. NEURAL INFORMATION
*%1e , PROCESSING SYSTEMS

Ry

AutoManual: Constructing Instruction
Manuals by LLM Agents via Interactive
Environmental Learning

NeurlPS 2024

Minghao Chen, Yihang L1, Yanting Yang, Shiyu Yu, Binbin Lin, Xiaofei He

Background of LLM Agents

Large Language Models (LLM)-based Agents have shown promise in
autonomously completing tasks across various domains, e.g., device control,
games, robotics, and web navigation.

Real-world Challenges 8 Distinct Environments

(On an Ubuntu bash terminal)
Recursively set all files in the directory to
read-only, except those of mine.

Web

Operating
(Given Freebase APIs) 2 System Database
What musical instruments do Minnesota-
born Nobel Prize winners play? L L M as Ag en t
2 A e \ .
(Given MySQL APIs and existed tables) I3 Large ! b\ 3
Grade students over 60 as PASS in the table. _ 1 ' Language i Knowledge | |Digital Card
® 1
(On the GUI of Aquawar) Agent E Models E 2 00 S
This is a two-player battle game, you are a B [Tt et < < N\
player with four pet fish cards I Interaction ol e |
A man walked into a restaurant, ordered a bow! Y i - 2
of turtle soup, and after finishing it, he E Interactive i House Lateral Think
committed suicide. Why did he do that? 1 b ' : :
' Environments Holding -ing Puzzles
(In the middle of a kitchen in a simulator) L _______________________ ' =
Please put a pan on the dinning table. * A= @ —
‘ Web —
Browsing L_.l

(On the official website of an airline)
Book the cheapest flight from Beijing to Los
Angeles in the last week of July.

[Aug 2023] "AgentBench: Evaluating LLMs as Agents." Xiao Liu (THU) et al. arXiv.

Shopping s

Typical LLM Agents: Voyager

* Voyager is a LLM-powered embodied agent in Minecraft

Voyager: An Open-Ended Embodied Agent with
Large Language Models

Guanzhi Wang N1 Z,Yuqi Xie3, Yunfan Jiang4*, Ajay Mandlekar'”,
Chaowei Xiao' 3, Yuke Zhu' 3, Linxi "Jim" Fan &%'t, Anima Anandkumar 12
TNVIDIA, 2Caltech, 3UT Austin, 4Stanford, >ASU

*Equal contribution TEquaI advising

& Corresponding authors: guanzhi@caltech.edu, drjimfan.ai@gmail.com

| ‘ \
Gather Cactus Build Base

- Build House s
Fight Enderman with Human Feedback TN Mine Gold

Limitations of Voyager

Voyager 1s specifically designed for the Minecraft environment:

* Environment-specific knowledge
* Multiple demonstrations from humans

are fed into the prompts of LLM.

System Prompts of A LLM Agent

You should then respond to me with

Explain (if applicable): Are there any steps missing in your plan? Why
does the code not complete the task? What does the chat log and
execution error imply?

Plan: How to complete the task step by step. You should pay attention
to Inventory since it tells what you have. The task completeness
check is also based on your final inventory.

Code:

1) Write an async function taking the bot as the only argument.
2) Reuse the above useful programs as much as possible.
- Use ‘mineBlock(bot, name, count)‘ to collect blocks. Do not
use ‘bot.dig‘ directly.
- Use ‘craftItem(bot, name, count)‘ to craft items. Do not use
‘bot.craft‘ directly.
- Use ‘smeltItem(bot, name count)‘ to smelt items. Do not use
‘bot.openFurnace ¢ directly.
- Use ‘placeltem(bot, name, position)‘ to place blocks. Do not
use ‘bot.placeBlock‘ directly.
- Use ‘killMob(bot, name, timeout)‘ to kill mobs. Do not use ¢
bot.attack ¢ directly.

3) Your function will be reused for building more complex
functions. Therefore, you should make it generic and reusable. You
should not make strong assumption about the inventory (as it may
be changed at a later time), and therefore you should always check

whether you have the required items before using them. If not,
you should first collect the required items and reuse the above
useful programs.
4) Functions in the "Code from the last round" section will not be
saved or executed. Do not reuse functions listed there.
5) Anything defined outside a function will be ignored, define all
your variables inside your functions.
6) Call ‘bot.chat‘ to show the intermediate progress.
7) Use ‘exploreUntil (bot, direction, maxDistance, callback)‘ when
you cannot find something. You should frequently call this before
mining blocks or killing mobs. You should select a direction at
random every time instead of constantly using (1, 0, 1).
8) ‘maxDistance ¢ should always be 32 for ‘bot.findBlocks‘ and ‘bot
.findBlock ‘. Do not cheat.
9) Do not write infinite loops or recursive functions.
10) Do not use ‘bot.on‘ or ‘bot.once‘ to register event listeners.
You definitely do not need them.

11) Name your function in a meaningful way (can infer the task
from the name).

Limitations of ReAct-like Agents

This problem is widespread in ReAct-like agents:

Number of Human Examples and Success rate (\%) of LLM agent methods on ALFWorld

Methods I Examples Put Clean Heat Cool Examine Puttwo | ALL
Testing LLM: GPY-3.5-turbo
ReAct [33] 12 75.0 24.7 377 364 44 .4 11.8 41.9
Reflexion [16] 12 87.5 44.1 73.9 500 61.1 35.3 59.8
ExpeL [35] 12 62.5 61.3 304 619 55.5 35.3 52.2
AdaPlanner [21] 6 83.3 46.2 652 742 68.5 52.9 63.3
Planner+Lib. 1 77.8 88.2 82.6 7277 37.0 27.5 66.5
AutoManual 1 95.8 79.6 87.0 78.8 100.0 66.7 86.2
Testing LLM: GPT-4-turbo
ReAct [33] 12 95.8 76.3 69.6 864 72.2 529 76.8
Reflexion [16] 12 100.0 95.7 783 864 77.8 70.6 85.9
ExpeL [35] 12 94 .4 82.8 724 81.8 72.2 58.8 79.2
AdaPlanner [21] 6 88.9 90.3 855 75.8 64.8 41.2 76.4
Planner+Lib. 1 100.0 93,5 100.0 939 88.9 39.2 88.1
AutoManual 1 100.0 98.9 100.0 954 100.0 90.2 974

LLM Agents Learn From Interactions

Some work uses self-reflection or skill library to enable LLM Agents to improve

themselves.

Program Generated by GPT-4

async function combatZombie(bot) {
// Equip a weapon
const sword =
t.inventory.findInventoryItem(
ite Name [
ne_Swc
].id
)3
if (sword) {
await bot.equip(sword, "hand");
} else {
await (bot);
}

// Craft and equip a shield

Program Description

async function combatZombie(bot) {
// The function is about
equipping a stone sword to combat
a zombie. If a stone sword is not
found, it will craft one.
Additionally, it crafts and equips

a shield for added protection. .
Afterwards, it proceeds to cook Embedding Key
sticks in order to restore hunger.

Once hunger is replenished, it
actively searches for a zombie and
engages in combat with it.

// Recover hunger

// Look for and combat a zombie

— Value

Add

Skill Library

Mine Wood Log
Make Crafting Table
Craft Wooden Pickaxe
Craft Stone Sword

Make Furnace

Combat Cow
Cook Steak
Craft Iron Axe

Combat Zombie

=0l X @ E

Task: Craft Iron Pickaxe

How to craft an iron pickaxe in
Minecraft?

To craft an iron pickaxe, you
need to 3 iron ingots and 2

Retrieve

sticks. Once you have gathered Embedding Query — Skill Library —

the materials,

Environment Feedback

Skill library (from Voyager)

Top-5 Relevant Skills

i Smelt Iron Ingot

// Craft Stick

‘ Make Crafting Table

‘ Make Furnace

ﬂ Craft Wooden Pickaxe

LLM Agents Learn From Interactions

However, these reflections and skills have not been well exploited to foster a deeper
understanding of the environment. As a result, directly using saved skills as in-
context examples can lead to the Path Dependence problem.

(Scenario 1 \
— S —
_ ,
(Scenario 2 \
— —_—
|

AutoManual Overview

* Building stage: build rules from the interactive environment.
* Formulating stage: formulates rules into a manual.

* Testing stage: A test-time Planner agent will be evaluated with the manual.

1

Ve A4

@ @
Analysis C_o“(ile

Test-time

g B
Plan Genel

@ Planner _ rated Manual /
) []
Planner @ Testing Stage
(]
Consolidator Markdown Manual
Housekeeper Agent Manual ﬂg
Overview
Merge& S SR
Delete Object Interaction
Introduction
;;;Il-n-t;e:l- Rules
Iy e
Update Update
A
N oo
‘l 8 \ Categorize
Online Rule System > > > \&/ summarize
Rule Formulator

Building Stage Formulating Stage

AutoManual: Building Stage

Two alternating iterative processes:

* The Planner agent interacts with the environment for an episode.

* The Builder agent updates the rules through a rule system.

Planner

Online Rule System

Merge&
Delete
Update
| E
Rule

Building Stage

Object Interaction

P N
a
kg
Analysis Code
) B
Test-time @
Plan Generated Manual /
Planner
[
@ Testing Stage
(]
Consolidator Markdown Manual
Housekeeper Agent Manual mg
Overview

Introduction

Included Rules
[{ B

A

Categorize
Summarize

Formulator

Formulating Stage

AutoManual: Planner Agent

The output of the Planner

1.
2.
3.
4

Analysis
Related Rules
Overall Plan
Code.

Planner

0

Planner

System Prompts
Related samples from skill/reflection library <

Current Rules

.... Task: heat some mug and put it in cabinet.

Analysis: ...

Related Rules:

rule_I: Ensure all receptacles are searched
Overall Plan: ...

def find_object(agent, recep_to_check, object_name)
for receptacle in recep_to_check:
observation = agent.go_to(receptacle)
if object_name in observation: break

[Step 1] Search for a mug
recep_to_check = ['cabinet_1', 'cabinet_2'...]
find_object(agent, recep_to_check, 'mug')

Error in [Step 3]: Cannot heat mug_1 with microwave_1

Analysis: ...

Related Rules:

rule_2: Go to the receptacle before interacting with it
Overall Plan: ...

[Step 3] Go to the microwave and open it if closed
observation = agent.go_to('microwave_1")
if 'closed' in observation:

observation = agent.open('microwave_1")

—

Result

The Trajectory

T

SN
N~
Skill Library

/{

Mistakes and
Misunderstandings

def find_object():

[Step 1] Search mug
find_object()

[Step 2] Take the mug

Prompt: Summarize mistakes
and your code into a code block

Direct Success

Reflection Library

Failure reason

Potential correction
Code error occurred when |
take the mug and try to heat:

[Step 3] heat mug_1
observation =

agent.heat_with('mug_1",
'microwave_1")

Feedback: “Nothing
happens.”

Prompt: Reflection the failure
reason and the code segment

Indirect Success

Failure

AutoManual: Planner Agent

The episodic result 1s
categorized into:

 Direct Success
 Indirect Success

e Failure

The Planner 1s prompted to
summarize the skill code or

reflection accordingly.

Planner

0

Planner

System Prompts
Related samples from skill/reflection library <

Current Rules

.... Task: heat some mug and put it in cabinet.

Analysis: ...

Related Rules:

rule_I: Ensure all receptacles are searched
Overall Plan: ...

def find_object(agent, recep_to_check, object_name)
for receptacle in recep_to_check:
observation = agent.go_to(receptacle)
if object_name in observation: break

[Step 1] Search for a mug
recep_to_check = ['cabinet_1', 'cabinet_2'...]
find_object(agent, recep_to_check, 'mug')

Error in [Step 3]: Cannot heat mug_1 with microwave_1

Analysis: ...

Related Rules:

rule_2: Go to the receptacle before interacting with it
Overall Plan: ...

[Step 3] Go to the microwave and open it if closed
observation = agent.go_to('microwave_1")

if 'closed' in observation:
observation = agent.open('microwave_1")

—

Result

The Trajectory

T

SN
N~
Skill Library

/{

Mistakes and
Misunderstandings

def find_object():

[Step 1] Search mug
find_object()

[Step 2] Take the mug

Prompt: Summarize mistakes
and your code into a code block

Direct Success

Reflection Library

Failure reason

Potential correction
Code error occurred when |
take the mug and try to heat:

[Step 3] heat mug_1
observation =

agent.heat_with('mug_1",
'microwave_1")

Feedback: “Nothing
happens.”

Prompt: Reflection the failure
reason and the code segment

Indirect Success

Failure

AutoManual: Builder Agent

Upon receiving the trajectory of the Planner, the Builder has to update the rules
through the rule system. Each rule in the rule system has four attributes:

1. Rule Type 2. Rule Content 3. Rule Example 4. Validation Logs.

@ Interactive Environment € ||
Ve @ 4 ™

O n
@ > . @ > _ Testtime| = &=
@ Analysis Code Trajectory Analysis Code Trajectory Planner an Generated Manual /
E © © N
Planner .
Planner Rujes e ° Rujes e \ J Testing Stage
o

Consolidator Markdown Manual
Housekeeper Agent Manual mg
Overview
Merge&
e= “success process”, ...) Delete Object Interaction
Builder KEEEEAT-LEEN) T,t_r?flf_‘_:_hon
Incyluded Rules
rule_1: -, ------
Update Update rule_2: ----, -
A
N P
‘l 8 \ Categorize
Online Rule System > > > \ I Summarize
Rule Formulator

Building Stage Formulating Stage

AutoManual: Builder Agent

To mitigate the hallucinations of the Builder, we employ case-conditioned prompting:
The Builder first determines the type of the major errors, then a targeted prompt
directs the Builder to focus on specific rules.

Base Prompt @ [I will write/update a]
Case 1 Prompt . “Success Process” rule ...
Builder

I will write/update a
Base Prompt « .
v Success Process” rule and

Case 2 Prompt “Corrected Error”...
l:l Classify Prompt: Imperfect Builder
Rules
. 1
L] e
— R imperfect | [— —
|:| Agent [~ p I will add an emphasis on
Builder response: Case 3 Prompt Builder \ “Success Process” rule ...)
Planner
Trajector ()
J Y Base Prompt @ I will write a “Unsolved
- Imperfect Base 4 Prompt Error” rule ...
?lassnfy Prompt: Rules Builder N\ J
< Imperfect
Builder response: Agent || BasePrompt I will add an emphasis on
Case 5 Prompt “Success Process” rule...

Builder

3 Possible Results 5 Possible Cases

AutoManual: Formulating Stage

* The Formulator agent categorizes the rules, summarizes the key points, and
formulates them into a manual in Markdown form.

Planner

Potential rules: =
Relev. isting rules E‘@
rule yt m. Wrt rule (
cc (12 .

Interactive Environment <

Trajectory

P N
a
4 B
Analysis Code
9 B
Test-time
Plan Generated Manual /
Planner

Testing Stage

o/-\O
&
(3 Consolidator

Potential rules: ... =+
Relevant existing rules: ... | &

Merge&
typ ess ess Delete
Builder A
Update Update
N anllem,
Online Rule System > > >§

Building Stage

Markdown Manual
Housekeeper Agent Manual mg
Overview

Object Interaction

Introduction

Included Rules
rule_1: -, -
rule_2: —-, -——

A

Categorize
Summarize

Formulator

Formulating Stage

Experiment: Environments

1. ALFWorld is a text-based virtual environment for the household robot.

2. MiniWoB++ is a simulated web environment where agents complete diverse tasks on
the Internet by performing keyboard and mouse actions.

3. WebArena (Reddit) is a realistic web environment by emulating the functionality and
data of Reddit website.

ALFWorld: Embodied Household Tasks MiniWoB++: Simulated Web Tasks WebArena: Realistic Web Navigation Tasks
Task: Put a pan on the diningtable. Task: Post a review of my recent reading “Gone with the

Find the email by Lisa and click _—Tr s P . 5 7
the trash icon to delete it. Last reward: - wind” in r/books with comment “It’s a book with history”.

Obsenvation: Last 10 average: - T o Observation:

The cabinet 1 is closed. Aitorums

Action: Open cabinet 1 Y Time left: 26 / 30sec : . : - [4184] heading ‘B’
E::gtor .) ; s [4364] link ‘baltimore’

: Episodes done: 0 - o [4365] link ‘books” ...

Sagittis quam e..

Observation: Georgiana e Action: Click[4365]

s v B — 5 =
You open the cabinet 1. Sed. Felis. T ————W -
i Hivoos - servation:
The cabinet 1 is open. Semper at sit m.. ‘ -
i i Lian ,
in F-yortssematiing Tristique. [4862] heading ‘/f/books’

Hendrerit suspe.. [5342] link ‘Submissions’

Experiment: Results

* Building and formulating stages: all agents use GPT-4-turbo (gpt-4-1106-preview).

* Testing stage: we equip the Planner agent with GPT-4-turbo or GPT-3.5-turbo, to
evaluate whether generated manuals can guide smaller LLM.

Success rate (\%) of LLM agent methods on ALFWorld test tasks (6 task types)

Methods l Examples l Put Clean Heat Cool Examine Puttwo | ALL
Testing LLM: GP¥-3.5-turbo
ReAct [33] 12 75,0 247 377 364 44 .4 11.8 41.9
Reflexion [16] 12 87.5 44.1 739 50.0 61.1 35.3 59.8
ExpeL [35] 12 62.5 61.3 304 619 55.5 353 522
AdaPlanner [21] 6 833 462 652 742 68.5 529 63.3
Planner+Lib. 1 77.8 88.2 826 727 37.0 27.5 66.5
AutoManual 1 958 79.6 87.0 78.8 100.0 66.7 86.2
Testing LLM: GPH-4-turbo
ReAct [33] 12 958 763 69.6 864 72.2 52.9 76.8
Reflexion [16] 12 100.0 957 783 864 77.8 70.6 85.9
ExpeL [35] 12 944 828 724 818 72.2 58.8 79.2
AdaPlanner [21] 6 889 90.3 855 75.8 64.8 41.2 76.4
Planner+Lib. 1 100.0 935 100.0 939 88.9 39.2 88.1
AutoManual 1 100.0 989 100.0 954 100.0 90.2 97.4

Experiment: Results

Noticeably, AutoManual requires little expert prior knowledge about the environment
and is only provided with one human example to achieve excellent results.

Success rate (\%) of LLM agent methods on ALFWorld test tasks (6 task types)

Methods I Examples l Put Clean Heat Cool Examine Puttwo | ALL
Testing LLM: GP}-3.5-turbo
ReAct [33] 12 750 247 377 364 44 .4 11.8 41.9
Reflexion [16] 12 87.5 44.1 739 50.0 61.1 35.3 59.8
ExpeL [35] 12 625 61.3 304 619 55.5 35.3 522
AdaPlanner [21] 6 833 462 652 742 68.5 52.9 63.3
Planner+Lib. 1 778 88.2 826 727 37.0 27.5 66.5
AutoManual 1 958 79.6 87.0 78.8 100.0 66.7 86.2
Testing LLM: GPH-4-turbo
ReAct [33] 12 958 763 69.6 864 72.2 52.9 76.8
Reflexion [16] 12 100.0 957 783 864 77.8 70.6 85.9
ExpeL [35] 12 944 828 724 818 72.2 58.8 79.2
AdaPlanner [21] 6 889 903 855 758 64.8 41.2 76.4
Planner+Lib. 1 100.0 935 100.0 939 88.9 39.2 88.1
AutoManual 1 100.0 989 100.0 954 100.0 90.2 97.4

Experiment: Results

The same results can be concluded for web environments: AutoManual is only

provided with one human example to achieve excellent results.

Success rate (\%) of LLM agent methods on MiniWoB++ tasks

WebArena (Reddit) tasks

‘Suc(%)’

Methods | Examples | With feedback @upes) || Examples | ALL (53 types)
Testing LLM: GPT-3.5-turbo
RCI [33] 22 45.6 104 77.3
AdaPlanner [21] 13 71.6 38 89.4
Planner+Lib. 1 63.6 4 87.0
AutoManual 1 82.2 4 92.7
Testing LLM: GPT-4-turbo
RCI [33] 22 60.4 104 88.6
AdaPlanner [21] 13 74.1 38 90.3
Planner+Lib. 1 80.2 4 94.4
AutoManual 1 94.5 4 98.3

Methods Examples
ReAct [37] 2 6.0
AutoGuide [2] 19 43.7
SteP [19] 14 55.0
Planner 1 51.1
AutoManual 1 65.1

Experiment: Analysis

The generated Markdown
manual 1s also friendly
for human-reading.

Housekeeper Agent Interaction Manual

Overview
This manual is intended to assist the housekeeper agent in the successful execution of tasks within a simulated environment. The rules

provide guidance on navigating, searching the environment, interacting with objects, and managing task-specific processes, as well as
ensuring the correctness of actions using code assertions.

Navigation and Search

Introduction

These rules provide guidance on how to search for objects, including the use of helper methods to streamline the process and ensure
thoroughness

Included Rules

* rule_0 (type="Special Mechanism"): Objects can be found in unconventional locations, and the agent should include all possible
locations in its search. For example, In epoch_9, the agent found a soapbar on the toilet, which is an unconventional location for storing
such items.

* rule_1 (type="Useful Helper Method"): If there are multiple receptacles to be search, the agent can write and use 'find_object' method
as shown in the example. For example,

Define helper method to find object that is needed
def find object(agent, recep_to_check, object name):
for receptacle in recep_to_check:
observation = agent.go_to(receptacle)
Check if we need to open the receptacle. If we do, open it.
if 'closed' in observation:
observation = agent.open(receptacle)
Check if the object is in/on the receptacle.
if object name in observation:
object_ids = get_object_with_id(observation, object_name)
return object_ids, receptacle

return None, None

Use as

tions to validate each step

assert object_ids is not None, "Error: Could not find the object.”

Object Interaction and Location Management

Introduction

These rules inform the agent on how to interact with objects, from taking and placing items to handling multiple items of the same type.
Proper location management is crucial for successful task execution.

Included Rules

* rule_2 (type="Special Phenomena"): When using a microwave, the agent can interact with it (e.g., heat an object) even if there is
another object inside, the agent is holding something, and the microwave door is not explicitly mentioned to be open.

For example, In epoch_1, the agent was able to heat the mug with the microwave even though there was an egg inside the microwave
and the agent was holding the mug.

rule_3 (type="Special Mechanism"): The agent can only hold one object at a time and must put down any held object before taking
another.

For example, In epoch_2, the agent was holding statue_4 and attempted to take statue_3 without putting down statue_4 first, resulting in
a 'Nothing happens' observation.

rule_4 (type="Success Process"): When tasked with placing multiple objects in/on a receptacle, the agent can either collect all objects
before attempting to place them or find and place them one by one, ensuring they revisit locations with multiple objects if necessary. If
all objects are found at the same location, handle them sequentially according to rule_3.

For example, In epoch_15, the agent should have revisited sidetable_1 to collect the second pencil before attempting to place itin
coffeetable_1. In epoch_23, the agent failed to collect all required statues from coffeetable_1 because it did not revisit, is also addressed
by this rule.

* rule_5 (type="Special Mechanism"): The agent must interact with a receptacle to observe its contents, which includes going to the
receptacle and opening it if it is closed. Before performing a put or take action, the agent must ensure it is at the correct location. When
multiple items of the same type are present at a location, the agent may have to choose one to interact with or examine.

For example, In epoch_16, the agent had to open several closed cabinets (e.g., cabinet_1, cabinet_2) to find items such as the mug. In
epoch_21, the agent observed multiple alarm clocks on desk_1 and selected one (‘alarmclock_4') to interact with.

Task-Specific Processes

Introduction

This category outlines the steps required to complete specific tasks, such as heating, cooling, and examining objects with another object's
assistance.

Included Rules

* rule_6 (type="Success Process"): If the task involves cooling or heating an object before placing it, the steps are: (1) search for the object
using 'find_object' in rule_1, (2) take the object, (3) cool/heat it as required, (4) go to the target receptacle, and (5) put the object. Ensure
the agent's location and the state of the environment are updated after each action. For example,

For example, to cool a mug and put it in a coffeemachine:

[Step 1] Use 'find_object' method to search all receptacles

[Step 2] Take the mug

[Step 3] Go to the fridge, open it if necessary, and cool the mug
[Step 4] Go to the coffeemachine and put the cooled mug in it
* rule_7 (type="Success Process"): When tasked with examining an object under a desklamp, the agent should first find the desklamp

and the object, ensure the desklamp is on, take the object, and then use the desklamp to examine the object. For example,

[Step 1] Use 'find _object' method to search for the desklamp and the object
[Step 2] Make sure the desklamp is on

[Step 3] Take the object

[Step 4] Use the desklamp to examine the object.

* rule_8 (type="Success Process"): When tasked to look at an object under a desklamp, ensure the lamp is on before using it to examine
the object. For example,

[Step 4] Go to the desklamp's location and turn it on if it's not already on
observation = agent.go_to(receptacle_with_desklamp)

observation = agent.use(found_desklamp)
assert 'turn on' in observation or 'already on' in observation, 'Error in [Step 4]: Failed to use the desklamp.'
[Step 5] Similarly, search for the alarm clock and take it.

[Step 6] With the desklamp on, examine the alarm clock using the desklamp.

Correctness and Validation

Introduction
Instructions on asserting code to confirm state changes and enhance the reliability of the agent's actions.

Included Rules

* rule_9 (type="Corrected Error"): Assertions in the agent's code should confirm state changes such as location or held objects, rather
than rely on specific phrases in observations.

For example, Instead of asserting 'You are at' in the observation, the agent should assert the location and held object state changes. Also,
when handling multiple required objects at the same location, the agent should manage them sequentially without unnecessary
variables.

Experiment: Analysis

AutoManual resolves the Path Dependency problem of skills by digging deeper
into mechanisms, updating and incorporating success processes, and annotating
important details.

Object Interaction and Location Management

Introduction

These rules inform the agent on how to interact with objects, from taking and placing items to handling multiple items of the same type.
Proper location management is crucial for successful task execution.

Included Rules

e rule_2 (type="Special Phenomena"): When using a microwave, the agent can interact with it (e.g., heat an object) even if there is
another object inside, the agent is holding something, and the microwave door is not explicitly mentioned to be open.

For example, In epoch_1, the agent was able to heat the mug with the microwave even though there was an egg inside the microwave
and the agent was holding the mug.

e rule_3 (type="Special Mechanism"): The agent can only hold one object at a time and must put down any held object before taking
another.

For example, In epoch_2, the agent was holding statue_4 and attempted to take statue_3 without putting down statue_4 first, resulting in
a 'Nothing happens' observation.

e rule_4 (type="Success Process"): When tasked with placing multiple objects in/on a receptacle, the agent can either collect all objects
before attempting to place them or find and place them one by one, ensuring they revisit locations with multiple objects if necessary. If
all objects are found at the same location, handle them sequentially according to rule_3.

For example, In epoch_15, the agent should have revisited sidetable_1 to collect the second pencil before attempting to place itin
coffeetable_1. In epoch_23, the agent failed to collect all required statues from coffeetable_1 because it did not revisit, is also addressed
by this rule.

Thanks for Watching!

