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user click sequence

Personalization plays an important role in user satisfaction S
e Requires to capture users’ multiple interests ‘ ’

Extractlon Module

oy
e Challenges: ‘ @m. O |

O UserS have diverse and VOIatiIe intereSts Source: Cen et al. Controllable Multi-Interest
. . . . Framework for Recommendation. KDD’20.
o Hard to retrieve items from niche interests

# of items in that category

e Our goal: find good user representation that can
capture multiple interests
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Previous Solutions on User Representation:
Point-based Representation

e Single-point User Representation (SUR)

o Fails to cover multi-interest (unless using a very high-dimension vector)
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Visualization:
Learned scores on all items for a user — using SUR

Dataset: MovieLens 1M
Original dimension size: 64
Reduce to dim=2 for 2D visualization
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Previous Solutions on User Representation:
Point-based Representation

e Single-point User Representation (SUR)

o Fails to cover multi-interest (unless using a very high-dimension vector)
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Previous Solutions on Multi-interest User Representation:
Point-based Representation

e Multi-point User Representation (MUR)

o How to choose # of points (K)?

m Pre-define K for all users. E.g., K=4. Max\MF [RecSys'13], PolyDeepWalk
[KDD’19], ComiRec [KDD’20], SINE [WSDM’21], PIMI [IJCAI'21]

m Otherheuristicrule. g — log, (|Z,|) MIND[CIKM19]
m Use the Ward clustering algorithm per-user. rinnerSage [KDD20]

o Does not model uncertainty.

ComiRec [KDD’20], PinnerSage [KDD’20]
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Previous Solutions on Multi-interest User Representation:
Point-based Representation

e Single-point User Representation (SUR)

o Fails to cover multi-interest (unless using a very high-dimension vector)

e Multi-point User Representation (MUR)
o How to choose # of points (K)?
o Does not model uncertainty

Main research question:

Find a better way for users’ multi-interest modeling
-> Adaptive to different number of interests

-> Be able to model uncertainty

-> Not require very high-dimension
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Previous Solutions on Multi-interest User Representation:
Point-based Representation

e Single-point User Representation (SUR)

o Fails to cover multi-interest (unless using a very high-dimension vector)

e Multi-point User Representation (MUR)
o How to choose # of points (K)?
o Does not model uncertainty

Main research question:

Find a better way for users’ multi-interest modeling
-> Adaptive to different number of interests
-> Be able to model uncertainty

> Not require very high-dimension } Address limitations of SUR

} Address limitations of MUR
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Motivation: Density-based User Representation

User 1 User 2 User 3
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Gaussian Process Regression (GPR)

A distribution over functions

Posterior update with observations
Can draw samples (functions)

Google Research
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Toy Example: Maintain a GPR per user
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Item embeddings are pre-trained and fixed.
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° Kernel
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UCB, sampling, ...

Retrieve top-N items 10
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Experiments

® Analysis on real-world datasets
#User #Item #Interac. Density

Amazon 6,223 32,830 4M 0.18%
MovieLens 123,002 12,532 20M 1.27%
Taobao 756,892 570,350 70M 0.01%

® Baselines:
O Heuristics: Random, MostPop
O  SUR: YoutubeDNN, GRU4Rec, BERT4Rec, gSASRec
O  MUR: MIND, ComiRec, CAMI, PIMI, REMI
O  DUR: GPR4DUR (ours)

e FEvaluation Metrics:
O  User side: (1) Interest-wise Coverage, (2) Interest-wise Relevance

O Item side: (1) Exposure Deviation, (2) Tail Exposure Improvement
12
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Performance across User Groups

Interest Relevance@20 (IR@20) - Tail Exp. Improv.@20 (TEI@20)
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(a) Users grouped by number of interactions

= Improvement across all user groups
= Large improvement on multi-interest users
= Improved exposure to tail items for multi-interest users 13
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Robustness to Dimension Size

Interest Coverage@20 (IC@20)

Random SUR —— DUR
0.64 - MostPop  —e— MUR
128 64 32 16 84

Dimension Size 14
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Summary

1. Understand limitations of point-based user representation (SUR & MUR)

2. A novel density-based user representation (DUR) using GPR

a. improve on both retrieval and ranking
b. largely improve the interest coverage and maintain high relevance
c. reduce exposure deviation (overall + niche interests)

d. robust to dimension size

Thanks for your attention!

Join us at Poster session 1 at Wed
11 Dec, 11 a.m. PST — 2 p.m. PST
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