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Complexity of learning with gradient based algorithms on NNs

There has been a lot of interest in recent years in investigating the complexity of learning with neural networks. Which functio
easy? Which ones are difficult to learn? etc.

[Abbe et al. 23,24]
[Glassgow 24] [Edleman et al.

i - 19,22] &
Learning Sparse Function | & many more

A junta problem with P “relevant coordinates” out of d > P total coordinates of the inputx € X 2 corresponds to

learning a family of distributions; ?/ﬁ = {QZZ’S . § iS a non-repeating sequence from [P] — [d]}

where @;{S is supported on % X & 4 such that

p = (U, Hy,) specifies marginal and link function respectively as below

x~pu? and | (Xg(1)s + s Xg(p) ~ Hyz &= (X5 -+ > Xy(p)) i the "support”

Question: What is the complexity of Learning a specific problem (¢, especially
using (S)GD on NNs?

e.g. linear functions are learned in O(d) time but parities take Q(d").




Gradient Queries:

Motivation

A popular approach has been to show Correlation

E [ Vo(y = f0)’| = =2 [yV, fy0)] +2E [f50) Vi o)
Correlation Statistical Query

Statistical Query (CSQ) lower bound which captures ) gy So0u=100
learning with gradient queries o e dea
=
3 £(u,y) = (u—yy
* For e.g [Abbe et al. 22,23| consider the special case of 5
. . . . . » ¢, loss trainirlg
1 = Unif({—1, + 119 unveiling rich hierarchical i
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= NN X Iterationss= iteration / d
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© loss....
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complexity and in much greater : waE -yl R il
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(C)SQ and Differentiable Learning Queries (DLQ)

A (O-restricted SQ learner with tolerance 7 issues a query
Qe QO C Lz(? X %) which is ¢ : Y X 24 — R (with controlled scale)
and recelves a response v such that

‘V_ _@[¢(y9x)] ‘ <7

1. Qg = LYY x X% (with scale controlled)

2. Qcso C Qgq contains Py, x) =y - P(x)

3. @pLq, C @sq contains of ¢(y, x) of the form

0
¢(y9x)= a ?/ﬂ(y,f(X,a))) ‘a):(); f: %‘dXL —>L
4),




Main Result: Characterizing the Complexity of SQ, CSQ & DLQ

Adaptive Query Complexity
Any “adaptive” learner A € {SQ, CSQ, DLQ }, with

precision 7 requires g queries s.t.choosing Leap, () = T s U-\Ul:_ U
/7% = Q(d-e2PAW)) A Up,...U.€%, icir | =17
= Uien Ui = LP]

There exists a learner with with /7% = O(d“%2PAW)

System of Detectable Subsets

A set U € 6 ,, is detectable by the method A, if
there exists 7(y) € W, (“the test functions set”)

Method Specific Test Functions Set W (Query Model Specific) :

(1) Yso = L2(,uy) (all squre integrable functions)

And zero-mean functions 7; (i.e. E,  [T(z)] =0, Vi€ U, (2) Yeso = {y = ¥} (ust identity)

(3) ‘PDLQK ={y— 0,f(u,y),u € R} (i.e. gradient w.r.t first argument)

st By, T(y)H T(z)| #0

g | iev i P g J
Non-Adaptive Query Complexity
Any “non-adaptive” learner A € {SQ, CSQ, DLQ_},
COVGFA(M) — max min ‘ U ‘ with precision 7 requires g queries s.t.choosing
i€[P] i€U,UEE, qlt* = Q(d<PverAW)

There exists a learner with with /7> = O(d“°V¢~W) .




Other Results and Connection with SGD on NNs

Relationship between SQ, CSQ, DLQ

For classification % = {—1, + 1} (like parities): SQ
and CSQ complexities are equal.

G50 = Ccsos Leap,, = Leap.,; Coversg = Covercsg

For regression, there can be arbitrary separation.

There exists a problem p such that
LeapSQ(,u) = 1 but Leapch(//‘) =P-1

Finally, for the squared loss, we have %DLQK( i = 6 cs0-
(u,y)~(u—y

But.., for the absolute loss, we have %DLQM N G50

| loss is “universal” e.g. always learns at SQ complexity

g/t* = O(d*) Adaptive Non-Adaptive
SQ ks = LeaPSQ(ﬂ)é k. = Coverso(u)
CSQ ki = LeapCSQ(M)é k. = Covercso(i)

Do, | ko= Leapy () ke = CoveroLo(u)

Stochastic Gradient Descent on Neural Network:

l

Leap=1 is a.k.a. merged

staircase property for £,
loss [Abbe et al 2022]

On Hypercube Leale_Q = ] sharply characterizes what problems are
4
j> learnable in O(d) scaling with online SGD with a loss 7.

« Online SGD with loss ¢ strongly learns junta problems LeapDI_Q = 1 in O(d) samples/iterations.
4

o If LeapDLQ > |, the dynamics get stuck in suboptimal saddle in O(d) iterations.
4

Do check out the paper!
See you at the poster session!




