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Sequential Assortment Selection Problem

® Foreveryroundt=1,...,T":
1. Observe contexts z;; € R? and rewards r¢; € [0, 1] for every item i € [N]
2. Offer an assortment Sy = {i1,...,%m} such that m < K

3. Observe the user click decision ¢; € Sy U {0} (“0”: outside option)
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Multinomial Logit (MNL) Choice Model (McFadden, 1977)

® Probability of choosing any item ¢ in assortment S;:

T oo *
, R exp(; w")
S =
pt(ll ty W ) 1+Zjest eXp(ZC;I;W*)

Here, w* € R? is an unknown parameter

® Expected revenue of the assortment S:

> Sexp(xlw*)rti
Ri(S,w™) =Y p(ilS, w)ry = =2
; ‘ 1+Zjesexp(x;rjw*)

® Optimal assortment: Sy = argmaxg.g R:(S, w")

* Goal: Minimize Reg,(w*) =/, R:(Sf,w*) — R¢(S¢, w")
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Definitions

® Uniform reward: All items have the same reward (WLOG let r; = 1).

®* Non-uniform reward: At every round ¢, reward r; for each item ¢ is
given arbitrarily.

®* Problem-dependent constant «:

k1= min min min pe(i]S, w)pe (05, w),

where W := {w € R? | ||w]|2 < 1}. Note that 1/x = O(K?).



Previous Works

total rounds, d: feature dimension, K: maximum assortment size, 1/K, = O(Kz)A

Table. T':
Regret Rewards Comput. per Round
Chen et al. (2020) Q(£dVT) Uniform -
Lower
Bound
Oh and Iyengar (2019) O(Ld**YT) Non-uniform O(t)
Chen et al. (2020) O(dVT) Non-uniform Intractable
Upper  Oh and Iyengar (2021) O(LdvT) Non-uniform O(t)
Bound  perivier and Goyal (2022)  O(dvKT) Uniform Intractable

1. No minimax result!
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1. No minimax result!

2. No lower bound under non-uniform rewards

3. No computationally efficient algorithm
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Main Contributions

Table. T': total rounds, d: feature dimension, K: maximum assortment size, 1/x = O(KZ),

Regret Rewards Comput. per Round

Chen et al. (2020) Q(£dVT) Uniform -
Lower . Y i

This work Q(-=dVT) Uniform -
Bound VK

This work Q(dVT) Non-uniform -

Oh and Iyengar (2019) O(1d**yT) Non-uniform o(t)

Chen et al. (2020) O(dVT) Non-uniform Intractable
Upper  Oh and Iyengar (2021) O(LdVT) Non-uniform O(t)
Bound  perivier and Goyal (2022)  O(dvVKT) Uniform Intractable

This work O(F=dVT) Uniform o(1)

This work O(dVT) Non-uniform (1)

1. Close gap between upper and lower bounds:

> Uniform rewards: K T = Regy |
> Non-uniform rewards: Reg is NOT affected by K

2. First lower bound for non-uniform rewards

3. Propose computationally efficient, nearly minimax optimal algorithm
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