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Modeling object interactions

Robotics i Spatial and physical reasoning

Look Before You Leap: Unveiling the Power of GPT-4V in Robotic Vision-Language Planning



Learning simulators: train from real data

Model rigid interactions with
classic simulators?

MuJoCo, Bullet, PhysX, etc.

Classic simulators

Problem: sim-to-real gap

Simulations do not exactly
match the real data



Learning simulators: train from real data

Classic simulators

Learned simulators

FIGNet - Allen*, Rubanova*
ICLR 2023

Model rigid interactions with
classic simulators?

MuJoCo, Bullet, PhysX, etc.

Allen*, Lopez-Guevara*, Stachenfeld*
NeurIPS 2022

Problem: sim-to-real gap

Simulations do not exactly
match the real data

MeshGraphNets - Pfaff*, Fortunato* Allen*, Lopez-Guevara*
ICLR 2021 CoRL 2022



FIGNet: graph network for rigid-body sim

Allen*, Rubanova* et al. Learning rigid dynamics with face interaction graph networks, ICLR 2023
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FIGNet’s mesh-to-mesh computations are expensive

FIGNet relies on finding pairs of mesh
triangles within a certain distance

... But typical meshes have
thousands of triangles

Expensive and slow!
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Solution: Signed Distance Functions (SDFs)

e SDFs define a distance field around the object surface
distance to object = SDF( %)

e How to get an SDF function? Learn it!

SDF = MLP (3¢ )




SDF-Sim: replace meshes with learned SDFs
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New construction of graph edges
connect nodes directly to the object center

O(n) edges instead of O(n~2) edges ->
less memory and runtime required




SDF-Sim: scale to 50x larger scenes

# collision edges [1076] # total edges [1076] dynamics timeiper step [s]
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Two orders of magnitude smaller memory and runtime!



270 objects, 384k nodes, 200 timesteps
SDF-Sim: scale to 50x larger scenes SO

Training: <10 objects

300 objects, 851k nodes, 200 timesteps 380 objects, 1.1M nodes, 400 timesteps




More nodes = more accurate

More advantages of learned SDFs

Learned SDF is memory-compact
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Flexible computation

Sample desired number of object nodes from SDF

Fewer nodes = cheaper

Small MLP SDFs are enough

Reconstruction quality is negligible between SDF MLP sizes

32 64 128

SDF layer width= {32, 64, 128}

Run simulation directly on 3D reconstructions
(e.g. NeRF)
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