
Fast TRAC
A Parameter-free Optimizer for

Lifelong Reinforcement Learning

NeurIPS’ 24

Aneesh Muppidi, Zhiyu Zhang, Heng
Yang

Lifelong Reinforcement Learning

In the lifelong setting, an agent is always adapting to new tasks or distribution shifts

… … …

Task: walk shift 1 shift 2 shift 3

Procgen

- similar, but different reward
functions, transitions,
obstacles, dynamics…

L1 L2 L3 L4 …LN

Loss of plasticity arises from adapting to a strictly ordered sequence of
tasks

Procgen

Lifelong RL Suffers from Loss of Plasticity

● At every new
distribution shift (level),
our ability to learn is
less (less reward
obtainable)

● Eventually, we are not
able to adapt at all

● AKA: negative transfer,
primacy bias, capacity
loss

Lifelong RL Suffers from Loss of Plasticity

● Policy collapse is
possible.

Why does Loss of Plasticity occur?

Parameter norm growth: Large weight magnitudes can

cause optimization issues.

Saturated activations: Dead or inactive units lead to

less expressive networks.

Ill-conditioned loss landscapes: regions where the

gradients either explode (large gradients) or vanish

(small gradients), making it difficult for the optimizer to

find a good path to minimize the loss.
Lyle et al., 2023

We need regularization back
to the random initialization!

Kumar et al., 2024

L2 is too sensitive and violates the lifelong setting

● L2 regularization towards
the initial random
parameters helps, but
requires a regularization
strength

● The regularization
strength is sensitive to
different tasks and
environments

● So how do we set it before
we run the agent?

Some other solutions

● Reset the network
● Reset some layers in the network
● Reset problematic neurons in the network
● Reset all the parameters, but not all the way
● Regularize the network parameters or features to avoid

divergence
● But again, how do we know when to reset before we run the

agent?

Sokar et al., 2023; Nikishin et al.,
2022; Ash and Adams 2020.

What I will demonstrate

Mitigate Loss of plasticity Accelerate forward transfer

How to implement in your DL/RL
experiments with only one line change!

and surprisingly…

In this non-convex, non-stationary optimization
problem, we can look to online CONVEX

optimization for help.

OCO Background

Online Convex Optimization is a two-player repeated game.

In each round:

● we pick a decision in a closed convex set X, and reveal it to

the environment

● the environment picks a convex loss function

● we suffer the loss , and observe a subgradient

● the environment determines if the game should stop – let T

be the total number of rounds.

Notes directly from “A modern introduction to online learning”
by Francesco Orabona

The goal is to minimize its total loss over all rounds, despite not knowing the
environment’s loss function in advance

OCO Background

Online Gradient Descent

However, OCO algorithms also require a scaling factor, which
gives us the following regret bound

Online Gradient Descent

The optimal scaling value is:

Which would give us:

Meta OCO algorithms

how can we calculate an unknown scaling factor on the fly?

We have a “tuner” algorithm take as input, and then calculate new

scaling value (based on a history of gradients):

Imagine a meta OCO algorithm tuner (to calculate the scaling
factor), and a base OCO algorithm.

Meta OCO algorithms

Meta OCO reduces through many reductions to Coin betting framework,
which relies on calculating a wealth function

Meta OCO algorithms

Meta OCO reduces through many reductions to Coin betting framework,
which relies on calculating a wealth (potential) function – this solved by
solving the backwards heat equation

Meta OCO algorithms

Two tuners based on two potential functions arise through this type of
framework:
● AdaNormalHedge [Luo and Schapire 2015] – suboptimal regret
● Erfi potential function [Harvey et al., 2020; Zhang et al., 2024] – optimal

regret

Calculate scaling values even
without:

Connecting OCO and Lifelong RL

● Policy definition: A policy refers to the distribution of an agent's actions,
parameterized by a weight vector , updated over time based on historical
observations.

● Loss function: After selecting an action and receiving feedback from the
environment, the agent defines a loss function , which characterizes the
hypothetical performance of each parameter.

● Policy gradient: The agent computes the policy gradient which

represents the direction to update the current policy to improve performance.

● Optimization update: Using a first-order optimization algorithm OPT, the agent

updates the weights as

We introduce a meta-optimizer called TRAC

We introduce a meta-optimizer called TRAC

TRAC: Algorithm

● TRAC operates on top of a Base
Optimizer (i.e Adam/SGD)

● It selects a scaling factor S to scale
the update of the Base optimizer

● TRAC uses the erfi function in a
data-dependent way to select S

● With S , we make an update to the
parameters the regularizes towards
theta ref, in our case this is the
random parameter initialization

● TRAC is insensitive to the step size

Experiments

High-dimensional, vision-based Low-dimensional, control

Here we change the level/game Here we perturb the
 observation states

We avoid plasticity loss

We avoid policy collapse

We also encourage positive transfer (rapid adaptation)

We also encourage positive transfer (rapid adaptation)

Scaling values proposed by TRAC

PPO is not alone in plasticity loss; TRAC works in other LRL algorithms

PPO is not alone in plasticity loss; TRAC works in other LRL algorithms

Other Meta OCO Tuners also work!!

Stronger Analysis Questions

● Analyze saturated activations with TRAC vs
Adam

● Look at relationship between S and Parameter
norm (looks like inversely correlated)

TRAC is easy to implement

Can be implemented in your RL or lifelong
experiments, with only one line change!

Fast TRAC 🏎
Thanks!

Scan 👉
pip install
Code
Paper
Examples

