NewbSZ4
Fast TRAC

A Parameter-free Optimizer for

Lifelong Reinforcement Learning

Aneesh Muppidi, Zhiyu Zhang, Heng
Yang

3 00 89 Harvard John A. Paulson

Y | Schoolof Engineering  [HI]ITIIFPIY][1]{Vi1H H(ILS

and Applied Sciences




Lifelong Reinforcement Learning

In the lifelong setting, an agent is always adapting to new tasks or distribution shifts

Task: walk shift 1 shift 2 shift 3

Harvard John A. Paulson
School of Engineering
and Applied Sciences



Procgen

L4

L3

- similar, but different reward
functions, transitions,
obstacles, dynamics...

Harvard John A. Paulson
School of Engineering
and Applied Sciences



Loss of plasticity arises from adapting to a strictly ordered sequence of

&

- Starpilot
30
(2]
2
®© 25
2
i
o 20
©
3
-5_15
L
& 10
(O]
=
5
0

08 10 12 14 16 18 20 22 24
Timesteps



V8K

By

Harvard John A. Paulson

School of Engineering

and Applied Sciences

b ‘.-}. 4 L _._Aq
?’ _\-;f_'. "'--';"; .".c
I. - : pu < t ‘
"t’(\' S U2 B e
SOl 2 A
| SRATY ' ,_f:‘
Y AN T
o - oA e
p R -
- - e s

2 y P '.c -
A T A S A
. . l|.J.’. - "‘L) LN

= N |
-k'.*)"f‘ A A




Mean Episode Rewards
o o o

o

03 00 B

Lifelong RL Suffers from Loss of Plasticity

Starpilot

0.8 1.0 1.2

Harvard John A. Paulson
School of Engineering
and Applied Sciences

1.4 1.6
Timesteps

1.8

2.0

2.2

24

® At every new
distribution shift (level),
our ability to learn is
less (less reward
obtainable)

e Eventually, we are not
able to adapt at all

e AKA: negative transfer,
primacy bias, capacity
loss



Lifelong RL Suffers from Loss of Plasticity

250 CartPole-v1
e Policy collapse is
2} .
2 200 possible.
=
)
0¥ 150
)
©
o
2}
‘5. 100
L
=
©
O 50
=
0 0 500 1000 1500 2000 2500 3000
Timesteps

Harvard John A. Paulson
School of Engineering
and Applied Sciences



3 2 By

Why does Loss of Plasticity occur?

Parameter norm growth: Large weight magnitudes can

cause optimization issues.
Saturated activations: Dead or inactive units lead to

less expressive networks.

lll-conditioned loss landscapes: regions where the
gradients either explode (large gradients) or vanish
(small gradients), making it difficult for the optimizer to

find a good path to minimize the loss.
Lyle et al., 2023

Harvard John A. Paulson
School of Engineering
and Applied Sciences



We need regularization back
Parameters are oL
Randomly Initialized to the random initialization!

but because of dying

RelLU and dormant
. neurons, we can't
o learn as much for a
. As we learn, .the new task
o Parameters find a
® better initialization

School of Engineering Kumar et al., 2024
and Applied Sciences

Harvard John A. Paulson



L2 is too sensitive and violates the lifelong setting

A Sensitivity . .
) — ® L2 regularization towards
e Acrobo the initial random
Hl CartPole
W Lunarlander parameters helps, but
< 50 requires a regularization
§ strength

e The regularization
strength is sensitive to
different tasks and
environments

4 5 6 7 8
Distribution Shift ® So how do we set it before
we run the agent?

Harvard John A. Paulson
School of Engineering
and Applied Sciences



Some other solutions

e Reset the network

e Reset some layers in the network

® Reset problematic neurons in the network

e Reset all the parameters, but not all the way

e Regularize the network parameters or features to avoid
divergence

® But again, how do we know when to reset before we run the
agent?

Harvard John A. Paulson Sokar et al., 2023; Nikishin et al.,
School of Engineering 2022; Ash and Adams 2020.

and Applied Sciences



What | will demonstrate

Mitigate Loss of plasticity Accelerate forward transfer
5 - o
© Starpilot 2 Acrobot-v1
= 0 | ' 2 o
) TN | - =
o o '
R ‘ /'l v % ~200
Q 20 Aiﬁ 7 [ | IS
R / WA Vv M y : ( R
o WV L R T / o
LLl v L -400
[ 0 =
8 0.0 0.5 1.0 1.5 20 25 3.0 8 0 500 1000 1500 2000 2500 3000
= Timesteps Te7 = Timesteps

Harvard John A. Paulson How to implement in your DL/RL

School of Engineering : . . |
ond Applicd Seionces experiments with only one line change!

03 00 B




and surprisingly...

In this non-convex, non-stationary optimization
problem, we can look to online CONVEX
optimization for help.

Harvard John A. Paulson
School of Engineering
and Applied Sciences



OCO Background

Online Convex Optimization is a two-player repeated game.
In each round:

e we pick a decision x:in a closed convex set X, and reveal it to Learner
the environment
e the environment picks a convex loss function |, . v &~ R X¢ l T It
e we sufferthe loss li(x), and observe a subgradient g: € dl:(x)
e the environment determines if the game should stop—let T Environment

be the total number of rounds.

The goal is to minimize its total loss over all rounds, despite not knowing the
environment’s loss function in advance

Harvard John A. Paulson . _ _ _ .
School of Engineering Notes directly from “A modern introduction to online learning

and Applied Sciences by Francesco Orabona



OCO Background

Definition. With an alternative fixed decision u € X called a comparator,

i T

Regret(Env,u) := > li(x) — > k(u).

—1 t=1

Goal. Without knowing the time horizon T, the environment Env and the comparator u beforehand,
our goal is to guarantee an upper bound of Regret(Env, u), sublinear in T.

Harvard John A. Paulson
School of Engineering
and Applied Sciences



Online Gradient Descent

OGD uses the projected gradient step xt+1 = Mx (Xt — ngt).

However, OCO algorithms also require a scaling factor, which
gives us the following regret bound

Regretr(Env, u) < O (Hu i + an ||gt||2)

o
"l i=1

Harvard John A. Paulson
School of Engineering
and Applied Sciences



Online Gradient Descent

9 T
U — X
Regrety(Env,u) < O (” g 1 + on E ||gt”2)
t=1

The optimal scaling value is: |u — x1]|

g = =
oL

Which would give us:

T
Regrety(Env,u) < O (u — X1||¢ Z th)
t=1

Harvard John A. Pauison
School of Engineering
and Applied Sciences




Meta OCO algorithms

Imagine a meta OCO algorithm tuner (to calculate the scaling
factor), and a base OCO algorithm.

how can we calculate an unknown scaling factor on the fly?

We have a “tuner” algorithm take (g;,x’*¢ —x;) as input, and then calculate new

scaling value (based on a history of gradients):
x:caled = X1 + 0y - (x;l:)ase o xl)

META OCO —» s

el 1+ S (X_t - X_1)
Harvard John A. Paulson *
@ School of Engineering

and Applied Sciences




Meta OCO algorithms

Meta OCO reduces through many reductions to Coin betting framework,
which relies on calculating a wealth function

T T
Z CiXt > @ (Z Ct)
=1 t=1

1. we place a bet xt € R;
2. Env picks a coin ¢t (possibly depending on our bet, and historical bets);

3. we observe ¢t and win c¢txy amount of money.

Our goal Is to guarantee a wealth function ¢, evaluated at a quantity that characterizes the
complexity of the coin / market instance.

Harvard John A. Paulson
School of Engineering
and Applied Sciences



Meta OCO algorithms

Meta OCO reduces through many reductions to Coin betting framework,
which relies on calculating a wealth (potential) function — this solved by
solving the backwards heat equation

1. we place a bet xt € R;
2. Env picks a coin ¢t (possibly depending on our bet, and historical bets);

3. we observe ¢t and win ctxt amount of money.

Our goal Is to guarantee a wealth function ¢, evaluated at a quantity that characterizes the
complexity of the coin / market instance.

Harvard John A. Paulson
School of Engineering
and Applied Sciences



Meta OCO algorithms

Two tuners based on two potential functions arise through this type of
framework:

e AdaNormalHedge [Luo and Schapire 2015] — suboptimal regret

e Erfi potential function [Harvey et al., 2020; Zhang et al., 2024] — optimal

regret
T
Regret™(0) < O {loly| D g™~
t=1
Calculate scaling values even Hu — X1 ||
Harvard John A. Paulson without:

School of Engineering
and Applied Sciences



Connecting OCO and Lifelong RL

e Policy definition: A policy refers to the distribution of an agent's actions,
parameterized by a weight vector 6, € R?, updated over time based on historical
observations.

® Loss function: After selecting an action and receiving feedback from the
environment, the agent defines a loss function J;(9), which characterizes the
hypothetical performance of each parameter.

e Policy gradient: The agent computes the policy gradient g¢; = VJ;(6;)which

represents the direction to update the current policy to improve performance.
e Optimization update: Using a first-order optimization algorithm OPT, the agent
updates the weights as 6,1 = OPT(6;, g¢)

Harvard John A. Paulson
School of Engineering
and Applied Sciences



We introduce a meta-optimizer called TRAC

Algorithm 1 TRAC: Parameter-free Adaption for Continual Environments.

1: Input: A policy gradient oracle G; a first order optimization algorithm BASE; a reference point 8, € R%; n
discount factors (31, . .., B, € (0, 1] (default: 0.9,0.99, . ..,0.999999).
Initialize: Create n copies of Algorithm 2, denoted as A, ...,.A,. Foreach j € [1 : n], A uses the discount
factor ;. Initialize the algorithm BASE at 0,¢¢. Let 61 = 0.
fort=1,2,...do

Obtain the ¢-th policy gradient g; = G(t, 0;) € R<.

Send g; to BASE as its ¢-th input, and get its output §525° € R

Forall j € [1 : n], send (g, 6; — 6,ef) to A; as its ¢-th input, and get its output s, ; € R.

Define the scaling parameter Sy, = Z;;l St+1,j-

Update the weight of the policy,

s

0 = N B DD

0t+1 — eref = (e?f]?e — eref) St+1-

9: end for

Harvard John A. Paulson
School of Engineering
and Applied Sciences



We introduce a meta-optimizer called TRAC

Algorithm 2 1D Discounted Tuner of TRAC.

1: Input: Discount factor 3 € (0, 1]; small value € > 0 (default: 10~9).

2: Initialize: The running variance vy = 0; the running (negative) sum oy = 0.
3: fort=1,2,...do

4:  Obtain the t-th input h;.

>

6

Let V¢ = ,82?)1;_1 -+ h‘t?', and Ot = ,BO't_l — ht.
Select the ¢-th output

S = © erfi ( i )
LT erfi(1/v/2) V20 +e/’

where erfi is the imaginary error function queried from standard software packages.
7: end for

Harvard John A. Paulson
School of Engineering
and Applied Sciences



TRAC: Algorithm

e TRAC operates on top of a Base
Optimizer (i.e Adam/SGD)

® |t selects a scaling factor S to scale

* the update of the Base optimizer

® TRAC uses the erfi functionin a
data-dependent way to select S

e With S, we make an update to the
parameters the regularizes towards
theta ref, in our case this is the
random parameter initialization

e TRAC is insensitive to the step size

Old Task

Harvard John A. Paulson 9t+1 — Oref + (HBase — Oref) St+1.

@ School of Engineering t+1
and Applied Sciences



High-dimensional, vision-based Low-dimensional, control

Obs += Obs += Obs +=

[noise] [noise] [ ]
\ \ \
/ / /
Control

e [ ]
...............................................................................................................

Here we perturb the

Here we change the level/game _
observation states

Harvard John A. Paulson
School of Engineering
and Applied Sciences

3 2 By




V8K

We avoid plasticity loss

mmmm Adam PPO

Starpilot

n

O 404

@©

3

m 30-

©

8 204

K2}

o

w10

=

3

s 9

1 1 1 1 1 1
00 0.5 1.0 15 20 25 30
Timesteps A
Fruitbot

n 87

©

© 6

=

o

o

©

o]

o

)

ol

L

()

@©

O

>

=6 T T T T T T
00 05 1.0 15 20 25 30

Timesteps

Harvard John A. Paulson
School of Engineering
and Applied Sciences

1e7

m=mmm TRAC PPO

Dodgeball

Mean Episode Rewards

5=
0
-5
1 1 1 1 1 1 1
0.0 0.5 1.0 1.5 2.0 25 3.0
Timesteps i
Chaser
o0 10—
B
@©
S 8+
(0]
@
(O]
e}
o
2
o
L
e
@
(O]
=
1 1 1 1 1 1 1
0.0 0.5 1.0 1.5 2.0 25 3.0
‘Timesteps et



We avoid policy collapse

- CartPole-v1 Acrobot-v1
0
2] 2]
-9 400 - -9
9 T -100-
= = |
X 300 L
) @ —200-
8 200~ g I
.8 .8 _300 -
L 1004 L
= oz
© O -400 -
O 0= )
> =
| | | | | -500 | | 1 | |
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
Timesteps Timesteps

Harvard John A. Paulson
School of Engineering
and Applied Sciences



We also encourage positive transfer (rapid adaptation)

mmmmm Adam PPO

» CartPole-v1

Ry
o
o

o

0 500 1000 1500 2000 2500 3000
Timesteps

Harvard John A. Paulson
School of Engineering
and Applied Sciences

Mean Episode Rewards

mmmm TRAC PPO Privileged Weight Reset

Acrobot-v1

500 1000 1500 2000 2500 3000
Timesteps

LunarLander-v2

250

-750 1

-1000 1

Mean Episode Rewards

A A
250_ { TATV [ | !
| Y P
.. /

-5001 A A"

0 500 1000 1500 2000 2500 3000

Timesteps



We also encourage positive transfer (rapid adaptation)

mmmmm Adam PPO

» CartPole-v1

Ry
o
o

o

0 500 1000 1500 2000 2500 3000
Timesteps

Harvard John A. Paulson
School of Engineering
and Applied Sciences

Mean Episode Rewards

mmmm TRAC PPO Privileged Weight Reset

Acrobot-v1

500 1000 1500 2000 2500 3000
Timesteps

LunarLander-v2

250

-750 1

-1000 1

Mean Episode Rewards

A A
250_ { TATV [ | !
| Y P
.. /

-5001 A A"

0 500 1000 1500 2000 2500 3000

Timesteps



Scaling values proposed by TRAC

Starpilot Dodgeball Chaser
0.100 A
010 0.10
0.075
? 0050+ @ 0.05 - @ 0.05 -
0.025 1
0.000 - ' ‘ ' 0.00 1 : ' i 0.00 A i . ; ;
0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Update Step L Update Step L Update Step 0

Harvard John A. Paulson
School of Engineering
and Applied Sciences



PPO is not alone in plasticity loss; TRAC works in other LRL algorithms

Starpilot with LRL Baselines (over 5 seeds)

50

40

w
o

Average Reward

10

IMPALA Adam
IMPALA TRAC
CLEAR Adam
CLEAR TRAC
Online EWC Adam
Online EWC TRAC
Mask Adam

Mask TRAC

A
T
' H

103 100 B

0.2

0.4 0.6 0.8 1.0 1.2
Timesteps le8

Harvard John A. Paulson
School of Engineering

and Applied Sciences

Average Normalized Reward (over 120M timesteps)

IMPALA Adam
IMPALA TRAC
CLEAR Adam
CLEAR TRAC
Online EWC Adam

1 Online EWC TRAC

Mask Adam
Mask TRAC

N




PPO is not alone in plasticity loss; TRAC works in other LRL algorithms

Other Procgen Games with LRL Baselines (over 5 seeds)

m

Q.

w .

710 Dodgeball i Chaser %o Fruitbot

£

-

s

S 0.8 0.8 0.8

—

g

L06 0.6 0.6

5 I
©

2 I
& 0.4 0.4 0.4

D

N

0.2 0.2 0.2

=

[

0.0 0.0 0.0

§ e@(;{-
<

Harvard John A. Paulson
School of Engineering
and Applied Sciences



Other Meta OCO Tuners also work!!

Erfi and NormalHedge Potential Functions (10 seeds for Procgen and Atari; 25 seeds for Control)
0.8

B NormalHedge Bl Erfi

0.6

0.4

0.2

0.0

Average Normalized Reward

Harvard John A. Paulson
School of Engineering
and Applied Sciences



Stronger Analysis Questions

® Analyze saturated activations with TRAC vs
Adam

® Look at relationship between S and Parameter
norm (looks like inversely correlated)

Harvard John A. Paulson
School of Engineering
and Applied Sciences



TRAC is easy to implement

Can be implemented in your RL or lifelong
experiments, with only one line change!

from trac_optimizer import start_trac

# with TRAC
optimizer = start trac(log file='logs/trac.text', Adam)(model.parameters(), lr=0.01)

# using your optimizer methods exactly as you did before (feel free to use others as well)
optimizer.zero grad()

optimizer.step()

Harvard John A. Paulson
School of Engineering
and Applied Sciences



Fast TRAC e

Scan

pip install @ pp
Code O GitHub
Paper arXiv
Examples

3 00 89 Harvard John A. Paulson

| ARl COMPUTATIONAL H(ILS

and Applied Sciences




