

Liangxin Liu¹, Xuebo Liu¹, Derek F. Wong², Dongfang Li¹, Ziyi Wang¹, Baotian Hu¹, Min Zhang¹

¹ Institute of Computing and Intelligence, Harbin Institute of Technology, Shenzhen, China ² NLP²CT Lab, Department of Computer and Information Science, University of Macau

Agenda

- 1 Introduction
- 2 SelectIT

- 3 Experiment
- 4 Analysis
- 5 Conclusion

Introduction

Introduction

Data Selection Definition

- Instruction tuning (IT) is crucial for improving large language model (LLM) interactions.
- However, high-quality data selection often relies on external resources, restricting broader application.
 - Some researchers use closed-source LLMs or additional datasets to evaluate and train models for optimized IT data.

Instruction Mining^[2]

- [1] AlpaGasus: Training A Better Alpaca with Fewer Data. ICLR, 2024
- [2] Instruction Mining: Instruction Data Selection for Tuning Large Language Models. arXiv, 2023

Introduction

Problem

Our objective is to explore the question:

- Exiting advanced data selection strategies rely heavily on external models or data.
- How can we overcome the existing limitations so that can select data efficiently.
- ✓ We propose SelectIT, a novel IT data selection method which exploits the uncertainty of LLMs without using additional resources.
- ✓ SelectIT can substantially improve the performance of LLMs across a variety of foundation models and domain-specific tasks.
- ✓ Our analysis suggests that longer and more computationally intensive IT data may be more effective, offering a new perspective on the characteristics of optimal IT data.

2

SelectIT

Sample Sm

Instruction

Sentence Reflection

Model Reflection

 $Score_3 = 4.01$

 $Score_m = 3.52$

7428

1683

46171

4.14

0.51

0.49

(×)

(X)

Overall Framework

1920

- SelectIT starts from the LLMs, utilizing their inherent uncertainty to assess the quality of instruction data
 - Token-level: Evaluate the quality using the uncertainty of token probabilities.

- SelectIT starts from the LLMs, utilizing their inherent uncertainty to assess the quality of instruction data
 - Token-level: Evaluate the quality using the uncertainty of token probabilities.
 - Sentence-level: Utilize the impact of different prompts on LLMs outputs to improve sample evaluation

- SelectIT starts from the LLMs, utilizing their inherent uncertainty to assess the quality of instruction data
 - Token-level: Evaluate the quality using the uncertainty of token probabilities.
 - Sentence-level: Utilize the impact of different prompts on LLMs outputs to improve sample evaluation
 - Model-level: Implement a collaborative decisionmaking process for data selection based on uncertainty across different LLMs.

- SelectIT starts from the LLMs, utilizing their inherent uncertainty to assess the quality of instruction data
 - Token-level: Evaluate the quality using the uncertainty of token probabilities.
 - Sentence-level: Utilize the impact of different prompts on LLMs outputs to improve sample evaluation
 - Model-level: Implement a collaborative decisionmaking process for data selection based on uncertainty across different LLMs.
 - Selective Alpaca: Apply SelectIT to the instruction dataset of alpaca-gpt4 to propose a new dataset

Experiment

Datasets and Experiment Settings

• Instruction Tuning (IT) and Alpaca-GPT4

□ Evaluation Sets:

• MMLU, GSM, BBH, TyDiQA, HumanEval, AlpacaEval

□ Baselines:

- Alpaca-GPT4^[1]
- LIMA^[2]
- AlpaGasus^[3]
- From Quantity to Quality^[4]

^[1] Instruction Tuning with GPT-4. arXiv, 2023.

^[2] LIMA: Less Is More for Alignment. NeurIPS, 2023.

^[3] AlpaGasus: Training a Better Alpaca with Fewer Data. ICLR, 2024

^[4] From Quantity to Quality: Boosting LLM Performance with Self-Guided Data Selection for Instruction Tuning. NAACL, 2024

Main Results

- SelectIT can better boost LLaMA-2's performance compared to vanilla IT.
- This enhancement is particularly evident on the BBH and GSM benchmarks.

ID	System	Exte	rnal	MMLU	ввн	GSM	TydiQA	CodeX	8 34.2 6 33.1 5 35.4 2 35.7 6 34.4 9 35.5 9 35.3 4 35.8 4 35.7 8 46.5 1 42.6 3 46.3 3 47.3 3 48.3 8 46.2 5 46.3	Ove	erall
	bystem.	Model	Data		2211	GDIN	1,uiq.1	Coucie		AVG	Δ (\uparrow)
Bas	se Model: LLaMA-2-7B		Imp	lemented E	xisting I	Method					
1	Alpaca-GPT4			46.5	38.4	15.0	43.4	26.8	34.2	34.1	-
2	LIMA	×	✓	45.4	37.5	14.3	45.1	24.6	33.1	33.3	-0.7
3	1 + AlpaGasus	✓	×	45.9	39.0	14.5	46.4	27.5	35.4	34.8	+0.7
4	1 + Q2Q	✓	×	46.9	39.4	15.3	46.7	28.2	35.7	35.4	+1.3
5	1 + Instruction Mining	✓	✓	47.0	39.6	16.5	47.1	28.6	34.4	35.5	+1.5
			our Prop	posed Meth	od (Indi	vidual)					
6	1 + Token-R	×	×	46.8	36.5	14.5	44.6	28.9	35.5	34.5	+0.4
7	1 + Sentence-R	×	×	46.9	38.1	16.1	48.4	26.9	35.3	35.3	+1.2
8	1 + Model-R	×	×	47.3	37.4	16.1	45.3	28.4	35.8	35.1	+1.0
				Proposed M	ethod (A	ĀU)					
9	SelectIT $(6 + 7 + 8)$	×	Х	47.4	40.6	16.8	47.4	29.4	35.7	36.2	+2.2
Bas	se Model: LLaMA-2-13B		Imp	lemented E	xisting I	Method					
10	Alpaca-GPT4			55.7	46.6	30.5	48.1	40.8	46.5	44.7	-
11	LIMA	×	✓	54.6	45.3	30.5	51.1	34.1	42.6	43.0	-1.7
12	10 + AlpaGasus	✓	×	54.1	47.3	31.5	50.6	41.3	46.3	45.2	+0.5
13	10 + Q2Q	✓	×	55.3	48.5	32.0	50.8	41.3	47.3	45.9	+1.2
14	10 + Instruction Mining	✓	✓	54.1	47.3	32.5	52.6	43.3	48.3	46.3	+1.6
	Our Proposed Method (Individual)										
15	10 + Token-R	×	×	55.3	47.3	30.5	51.3	39.8	46.2	45.1	+0.4
16	10 + Sentence-R	×	×	55.2	48.3	31.0	52.2	42.5	46.3	45.9	+1.2
17	10 + Model-R	×	X	55.1	47.5	31.5	52.3	40.2	46.1	45.5	+0.8
				Proposed M	ethod (A	Ā[[]					
18	SelectIT $(15 + 16 + 17)$	×	×	55.7	48.9	33.0	54.1	42.2	48.8	47.1	+2.4

Table 1: Overall results on IT. "CodeX" and "AE" mean HumanEval and AlpacaEval benchmarks. All the scores are averages of three independent runs with different random seeds.

4 Analysis

Ablation Analysis

□ Effect of IT Data Quantity:

We opt for 20% for implementing the SelectIT on the Alpaca dataset, base on the tradeoff of training resources, training time, and model performance.

Ablation Analysis

K is a critical parameter for our method, impacting not only the range of scores assigned by the LLMs but also the number of rating prompts. we set K = 5 as the default value in SelectIT.

We ascertain that the α value of 0.2 is optimally suited to establish an effective balance between the sample's quality and the model's uncertainty.

K	LLaMA-2-7B	LLaMA-2-13B	Overall
3	35.6	46.4	40.5
5	36.2	47.1	41.7
7	35.7	47.3	41.5
9	36.0	46.8	41.4

Table 2: Effect of different K.

α	MMLU	BBH	GSM	Tydiqa	CodeX	AE	AVG
0.2	47.4	40.6	16.8	47.4	29.4	35.7	36.2
0.4	47.9	39.4	15.5	46.5	29.4	35.8	35.8
0.6	47.8	39.8	16.5	45.6	29.1	35.1	35.7
0.8	47.6	36.4	16.5	43.6	26.7	35.4	34.4

Table 3: Effect of different α .

Ablation Analysis

□ Effect of Data Imbalance

Base Model	Datasets	Data Size	MMLU	ввн	GSM	Tydiga	CodeX	AE	Overall	
Dusc 1/10de1	Dumbers	Dum Bize	111111111		GDIA	1) aiqu	204011	112	AVG	Δ (\uparrow)
I I aMA_2-7R	LIMA Selective Alpaca	1K 1K	45.4 46.6	37.5 41.3	14.3 14.5	45.1 46.2	24.6 30.6	33.1 33.8	33.3 35.5	+2.2
LLaMA-2-7B	AlpaGasus Selective Alpaca	9K 9K	45.9 47.2	39.0 41.3	14.5 18.5	46.4 47.6	27.5 28.3	35.4 35.4	34.8 36.4	+1.6

Table 5: Results on IT for different datasets with the same number of instances.

• When facing the same amount of data, SelectIT can still demonstrate better performances, which further illustrates its effectiveness.

Robustness across Models, Datasets and Domains

■ Various Instruction Tuning Datasets

Datasets	Data Size	MMLU	ввн	GSM	Tydiqa	CodeX	AE	Ove	erall
					-54			AVG Δ (*) 32.2 - 33.6 +1.	Δ (\uparrow)
WizardLM WizardLM + SelectIT	143K 28.6K	43.8 45.1	37.8 40.1	10.0 11.0	41.2 43.1	25.2 27.5	35.3 34.7		+1.4
Orca-GPT4 Orca-GPT4 + SelectIT	1M 0.2M	40.1 43.9	35.6 38.7	13.0 16.5	46.0 42.0	23.3 27.7	38.1 37.4	32.7 34.4	+1.7

Table 7: Results of IT with various IT datasets.

• SelectIT consistently enhances the performance of the model on both the WizardLM and Orca-GPT4 datasets.

Robustness across Models, Datasets and Domains

■ Various Domain-specific Tasks

• SelectIT is a versatile and scalable method, effective not only for IT data selection but also for domain-specific tasks like MT.

□ Efficiency of SelectIT

• Although Selective Alpaca is selected by the LLaMA-2 models, it is also applicable to the Mistral-7B and LLaMA-3-8B.

Method	Size	ALL			
	Size	COMET	BLEU		
SoTA A	Models				
NLLB (Costa-jussà et al., 2022)	54B	78.8	26.3		
GPT-3.5	-	85.6	34.8		
GPT-4	-	85.8	35.1		
Ēxīstīng	Method	!			
LLaMA-2 (Touvron et al., 2023b)	7B	76.5	21.1		
TIM (Zeng et al., 2023)	7B	79.1	26.4		
SWIE (Chen et al., 2023b)	7B	80.6	27.6		
BigTranslate (Yang et al., 2023)	13B	78.8	21.9		
Bayling (Zhang et al., 2023)	13B	82.0	27.8		
Our Impleme	nted Me	ethod			
ALMA	7B	83.2	29.7		
w/ SelectIT	7B	83.7	30.5		
ĀLMĀ	_ 13B_	- 83.7	31.5		
w/ SelectIT	13B	84.2	32.2		

Table 8: The overall results on MT LLMs.

Method	Speed	Time	Cost
ChatGPT API	0.76 it/s	19.07h	\$52.02
GPT4 API	0.37 it/s	38.98h	\$2871.56
SelectIT	9.34 it/s	5.80h	\$26.68

Table 9: Comparison of selection efficiency.

Insights of Selective Data

□ Different Selection Strategies

• SelectIT can significantly better improve the abilities of LLMs than random selection methods.

 SelectIT can reasonably rank samples based on their characteristics.

Method	LLal	MA-2	AL	MA	$\Delta (\uparrow)$	
	7B	13B	7B	13B	- (1)	
Full Dataset	34.1	44.2	29.7	31.5	-	
w/ Random (Full)	34.1	45.1	29.3	31.0	0.0	
w/ Random (Unselected)	34.6	44.3	29.1	31.2	-0.4	
w/ Length	35.5	47.1	30.1	31.8	+5.0	
w/ SelectIT	36.2	47.1	30.5	32.2	+6.5	

Table 10: Comparasion with variants.

Insights of Selective Data

□ Data Representation Analysis

 Selective Alpaca data are mostly concentrated around the center, indicating that our dataset predominantly contains high-quality data near the center

■ Data Characteristic Analysis

 SelectIT tends to select high-quality mathematical data, providing a solid explanation for the observed improvement in the reasoning abilities of LLMs.

Conclusion

Conclusion

- We propose SelectIT, a novel IT data selection method which exploits the uncertainty of LLMs without using additional resources.
- We introduce a curated IT dataset, Selective Alpaca, by selecting the high-quality IT data from the Alpaca-GPT4 dataset.
- Our analysis suggests that longer and more computationally intensive IT data may be more effective, offering a new perspective on the characteristics of optimal IT data.

Thanks for your listening!