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Traffic ControlSmart Logistics 

Multi-agent reinforcement learning is an important way to solve the optimized decision-

making of complex intelligent systems.
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Question

Let's say we're controlling five 
marines on the left. What 
strategy should we use to defeat 
the six enemy marines on the 
right?

Image from the scene

GPT-4 Output

1. Analyze the Enemy Composition
2. Positioning and Formation
3. Focus Fire
4. Utilize Abilities Strategically
5. Adapt to Enemy Movements
6. Retreat and Heal

Sketchy and misleading

Limited to addressing issues related to physical facts 
and cannot handle decision-making problems

Only for single-agent tasks with manually crafted 
reward functions, making them incapable of 

handling multi-agent coordination tasks

The current offline policy generation methods use pessimistic estimation and conditional 

sequence generation. However, they cannot find the correct answers through trial and 

error like humans.
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To enhance response quality for decision-making problems, we can integrate multi-agent 

reinforcement learning with offline policy learning in world models
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VisionSMAC: we convert the state into images and languages through a parser 𝒇, 

decoupled from StarCraft, making it easy to create new contents
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Interactive Simulator: (1) Image Tokenize, (2) Dynamics Model, and (3) Reward Model.

Inference: Learning Policy in the Simulator
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Dynamics Model (causal transformer)
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Reward Model (bidirectional transformer)
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Learning Policy in the Simulator
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① Generate reward-free trajectory by interacting with the dynamics model

② Generate reward for each state-action pair using the reward model

③ Update agents using any off-policy MARL algorithm

Behavior 
Regularization
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