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Image Generation Benefits Image Understanding

Studies have shown that IG models can benefit IU tasks in various ways.
© Data augmentation through synthetic data generation

Generative
Model . L. . .
© Joint training with real images

r }
' )l l Supervision
Btz 7 . - Segmentor

Diverse Synthetic Images

Leverage synthetic images

© Pre-training for real images

—

Lihe Yang, et al. “FreeMask: Synthetic Images with Dense Annotations Make Stronger Segmentation Models.” NeurlPS, 2023.
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Image Generation Benefits Image Understanding

Studies have shown that IG models can benefit IU tasks in various ways.
@ Improved representation learning

(optional)
B?ttle.neck Semantic] Zsem
Diffusion encoder om Latent DDIM
Model For unconditional sampling

D(E(X’), X)) = Xq — X

Encoder

Conditional DDIM

Latent z

Stochastic encoder + Decoder
X7
X Encoder path (semantic) : Image —p Zgem
Denoiser Encoder path (stochastic) : Image X
Decoder path : (Zsem, X7) = Image (reconstructed)

Drew A. Hudson, et al. “SODA: Bottleneck Diffusion Models for Representation Learning.” arXiv:2311.17901, 2023.
Konpat Preechakul, et al. “Diffusion Autoencoders: Toward a Meaningful and Decodable Representation.” CVPR, 2022.
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Motivation
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Image Generation Benefits Image Understanding

Studies have shown that IG models can benefit IU tasks in various ways.
© Utilizing intermediate features from |G models for solving perception tasks

1. Extract Features from Network 2. Pool Sizes 3. Heads

—A—>

_ -

Soumik Mukhopadhyay, et al. "Diffusion Models Beat GANs on Image Classification.” arXiv:2307.08702.
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The Reciprocal Question?

. Representation Learning )
Image Generation (IG) Data Augmentation Image Understanding (1U)
Intermediate Feature
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?
The reciprocal question remains largely uncharted:
How might IU models aid IG tasks?
Fri, Dec 13 4/16
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Token-Based Image Generation
[e] le]e]

Two-Stage Image Generation

4 Tokenizer T ) @ The encoder &, quantizer Q, and codebook
C collectively form an image tokenizer 7.

o Given an image | € R#*Wx3 the encoder
& converts this image into a feature map

; 3 Jopodul /
=

x € th w><d_
Codebook € — .
) o @ Codebook C is a set of N code vectors
c
2 s {c;i}V | € RV*9, where each code vector
) ¢; € RY corresponds to a specific code i.
N S
\§ e Quantizer Q then maps x into a sequence

of codes z = {z}L ;.
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Token-Based Image Generation
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Two-Stage Image Generation

[ Tokenizer T \

- @ A decoder D maps the code vectors to the
3 |x pixel space.
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Two-Stage Image Generation
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@ The proposal network P models the distribution over z, denoted as p(z).
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Image Tokenizers
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Token-Based Image Generation
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Image Tokenizers

\ector Quantization

Xy Caiy

| Encoder € \ | DecoderD \
t )

Tec -
Image I~ #reeeeeeee Reconstruction I

(a) VQGAN

Patrick Esser, Robin Rombach, et al. “Taming Transformers for High-Resolution Image Synthesis.” CVPR, 2021
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Image Tokenizers

\ector Quantization Finite Scalar Quantization
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(a) VQGAN (b) FSQ

Fabian Mentzer, David Minnen, et al. “Finite Scalar Quantization: VQ-VAE Made Simple.” ICLR, 2024.
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Image Tokenizers

\ector Quantization Finite Scalar Quantization \ector Quantization
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Zhiliang Peng, Li Dong, et al. “BEiT v2: Masked Image Modeling with Vector-Quantized Visual Tokenizers.” arXiv preprint arXiv:2208.06366, 2022.
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Image Tokenizers

\ector Quantization
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(b) FSQ (c) VQ-KD
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Feature Reconstruction
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Token-Based Image Generation
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Benchmark

FID

o)

. AR/ NAR §

Ul Proposal Network P %

]

Image I Reconstruction T
}
Codebook Usage PPL A

We build the above benchmark to evaluate the IG performance of tokenizers.
@ For each tokenizer, we train a proposal network and a decoder to form an image generator.

@ Various metrics are adopted for a comprehensive evaluation.
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Main Observation
Main Observation

@ VQ-KD significantly enhances generation quality over VQGAN.

Tokenizer ~ Codebook Usage (%) rFID | PPL| FIDagrJ) FIDnar 4

VQGAN 49 5.0 116.75 24.11 20.03
FSQ 100.0 496 79156  40.17 29.78
VQ-KDcyip 100.0 4.96 53.73 11.78 9.51
VQ-KDv;t 100.0 3.69 89.30 11.40 8.45
VQ-KDpino 100.0 3.41 74.07 13.15 10.21
VQ-KDmaE 100.0 4093 280.06 26.85 16.11
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Main Observation
Main Observation

@ VQ-KD significantly enhances generation quality over VQGAN.
@ The superiority of VQ-KD is irrelevant to the quantization operation and codebook usage.

Tokenizer ~ Codebook Usage (%) rFID | PPL| FIDagrJ) FIDnar 4

VQGAN 49 5.09 116.75 2411 20.03
FSQ 100.0 496 79156 40.17 29.78
VQ-KDcyip 100.0 4.96 53.73 11.78 9.51
VQ-KDvy;t 100.0 3.69 89.30 11.40 8.45
VQ-KDpino 100.0 3.41 74.07 13.15 10.21
VQ-KDat 100.0 493 28006 2685  16.11
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Main Observation
Main Observation

@ VQ-KD significantly enhances generation quality over VQGAN.

@ The superiority of VQ-KD is irrelevant to the quantization operation and codebook usage.

Tokenizer =~ Codebook Usage (%) rFID | PPL] FIDar | FIDnar

VQGAN 49 5.0 116.75 24.11 20.03
FSQ 100.0 4906  791.56 40.17 29.78
VQ-KDcpip 100.0 4.96 53.73 11.78 9.51
VQ-KDv;t 100.0 3.69 89.30 11.40 8.45
VQ-KDpino 100.0 3.41 74.07 13.15 10.21
VQ-KDmAE 100.0 493  280.06 26.85 16.11
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Main Observation
Main Observation

@ VQ-KD significantly enhances generation quality over VQGAN.

@ The superiority of VQ-KD is irrelevant to the quantization operation and codebook usage.

Tokenizer ~ Codebook Usage (%) rFID | PPL| FIDard FIDnar J

VQGAN 49 5.0 116.75 24.11 20.03
FSQ 100.0 496 791.56  40.17 29.78
VQ-KDcpip 100.0 4.96 53.73 11.78 9.51
VQ-KDy;t 100.0 3.69 89.30 11.40 8.45
VQ-KDpino 100.0 3.41 74.07 13.15 10.21
VQ-KDmAE 100.0 4903  280.06 26.85 16.11
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Main Observation
Main Observation

@ VQ-KD significantly enhances generation quality over VQGAN.
@ The superiority of VQ-KD is irrelevant to the quantization operation and codebook usage.

© Tokenizers with stronger semantic understanding tend to deliver superior |G performance.

Tokenizer ~ Codebook Usage (%) rFID | PPL| FIDagrJ) FIDnar 4

VQGAN 4.9 5.09 116.75 24.11 20.03
FSQ 100.0 496 79156  40.17 29.78
VQ-KDcyip 100.0 4.96 53.73 11.78 9.51
VQ-KDy;1 100.0 3.69 89.30 11.40 8.45
VQ-KDpino 100.0 3.41 74.07 13.15 10.21
VQ-KDpaE 100.0 493 280.06  26.85 16.11
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Further Verification

© The superiority of VQ-KD holds across proposal networks.

Tokenizer ~ Codebook Usage (%) rFID | PPL| FIDagrJ) FIDnar 4

VQGAN 4.9 5.0 116.75 24.11 20.03
FSQ 100.0 496 79156  40.17 29.78
VQ-KDcyip 100.0 4.96 53.73 11.78 9.51
VQ-KDv;t 100.0 3.69 89.30 11.40 8.45
VQ-KDpino 100.0 3.41 74.07 13.15 10.21
VQ-KDmaE 100.0 40903 280.06 26.85 16.11
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Further Verification

© The superiority of VQ-KD holds across proposal networks.

Tokenizer ~ Codebook Usage (%) rFID | PPL| FIDagrJ) FIDnar 4

VQGAN 4.9 5.0 116.75 24.11 20.03
FSQ 100.0 496 79156 40.17 29.78
VQ-KDcyip 100.0 4.96 53.73 11.78 9.51
VQ-KDv;t 100.0 3.69 89.30 11.40 8.45
VQ-KDpino 100.0 3.41 74.07 13.15 10.21
VQ-KDmaE 100.0 40903 280.06 26.85 16.11
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Further Verification

© The superiority of VQ-KD holds across proposal networks.
@ The superiority of VQ-KD holds across datasets.

Tokenizer T Codebook Usage (%) rFID| PPL| FIDagrJ FID1o |

VQGAN 2.4 16.21 47.89  38.43 24.11
FSQ 100.0 4.62 1040.02 44.64 23.36
VQ-KDcpip 82.2 5.48 7231  29.80 11.17
VQ-KDv;it 100.0 3.70 117.10  23.51 15.49
VQ-KDpino 100.0 2.69 129.93  17.55 11.50
VQ-KDmae 100.0 3.51 317.98  44.01 15.60
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Further Verification
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Further Verification

© The superiority of VQ-KD holds across proposal networks.
@ The superiority of VQ-KD holds across datasets.

Tokenizer T Codebook Usage (%) rFID| PPL| FIDagrJ FID1o |

VQGAN 2.4 16.21 4789 3843 24.11
FSQ 100.0 4.62 1040.02 44.64 23.36
VQ-KDcpip 82.2 5.48 7231  29.80 11.17
VQ-KDv;it 100.0 3.70 117.10 23.51 15.49
VQ-KDpino 100.0 2.69 12993 17.55 11.50
VQ-KDmae 100.0 3.51 317.98  44.01 15.60
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Further Verification

© The superiority of VQ-KD holds across proposal networks.
@ The superiority of VQ-KD holds across datasets.
© The superiority of VQ-KD holds across tasks.

Tokenizer T Codebook Usage (%) rFID| PPL| FIDagrJ FID1o |

VQGAN 2.4 16.21 47.89  38.43 24.11
FSQ 100.0 462 1040.02 44.64 23.36
VQ-KDcLip 82.2 5.48 72.31 29.80 11.17
VQ-KDv;1 100.0 3.70 117.10 23,51 15.49
VQ-KDpino 100.0 2.69 120.93  17.55 11.50
VQ-KDmaAE 100.0 3.51 317.98  44.01 15.60
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Results

Original

VQ-KD visualization of
@ the original images,

Reconstruction

@ The reconstructed images,
@ The AR generation,
@ The NAR generation.
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Codebook

@ Compared to VQGAN, the organized feature space of VQ-KD improves the clarity of
code semantics and helps to better understand image content and code interaction.

60 60
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Codebook visualization of VQGAN and VQ-KDy;T.
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Contact Us

B orxiv.org/abs/2411.04406 @ lutingwang.ai@qq.com

) https://github.com/magic-research/vector_quantization
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