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Abstract

One of the fundamental challenges for offline reinforcement learning (RL)
is ensuring robustness to data distribution. Whether the data originates
from a near-optimal policy or not, we anticipate that an algorithm should
demonstrate its ability to learn an effective control policy that seamlessly
aligns with the inherent distribution of offline data. Unfortunately, behavior
regularization, a simple yet effective offline RL algorithm, tends to struggle
in this regard. In this paper, we propose a new algorithm that substantially
enhances behavior-regularization based on conservative policy iteration.
Our key observation is that by iteratively refining the reference policy used
for behavior regularization, conservative policy update guarantees
gradually improvement, while also implicitly avoiding querying out-of-
sample actions to prevent catastrophic learning failures. We prove that in
the tabular setting this algorithm is capable of learning the optimal policy
covered by the offline dataset, commonly referred to as the in-sample
optimal policy. We then explore several implementation details of the
algorithm when function approximations are applied. The resulting

algorithm is easy to implement, requiring only a few lines of code
modification to existing methods. Experimental results on the D4RL

benchmark indicate that our method outperforms previous state-of-the-art
baselines in most tasks, clearly demonstrate its superiority over behavior
regularization.

Conservative Policy Iteration (CPI)
Definition of CPI

Let 7 > 0, the conservative policy optimization (CPO) update the policy for any
s € § with the following policy optimization problem

maxEy[Q (s, @)] — Dy (1(s) | 7(s)),

which implicitly guarantees policy improvement constrained on the support of the
reference policy . By extending this key observation in an iteratively manner, we
obtain the following Conservative Policy Iteration (CPI) algorithm for offline RL. It
starts with the behavior policy my = mp. Then in each iteration t = 0,1,2, ..., the
following computations are done:

» Policy evaluation: compute Q™ and;
+ Policy improvement: Vs € §, 1,1 = argmax,; E,[Q™ (s, @)] — 1D ( |l 7r,).

In this approach, the algorithm commences with the behavior policy and
proceeds to iteratively refine the reference policy used for behavior
regularization. Thanks to the conservative policy update, CPl ensures policy
improvement while mitigating the risk of querying any OOD actions that could
potentially introduce instability to the learning process.

* indicates corresponding authors.

Convergence of CPI

We consider the tabular setting with finite state and action space. In this setting, CPI
converges to the optimal policy that are well-covered by the dataset, commonly referred
to as the in-sample optimal policy.

Theorem 1. We consider tabular MDPs with finite S and A. Let r, be the produced policy
of CPI at iteration t. There exists a parameter T > 0 such that for any s € §

. - 1 2log|A|
Vi (8) =V (S)Sm-jt_

Practical Implementations

CPI consists of two steps at each iteration. The first step involves policy evaluation, which is
carried out using standard TD learning: we learn the critic by

TN, o) [ 105 @) ~ Q5.
where Qg is a target network. We also apply the double-Q trick to stabilize training. The policy
improvement step requires more careful algorithmic design. Practical implementations often
rely on a limited number of gradient descent steps for optimizing, thus could suffer from our-
of-support samples. This leads to policy optimization errors which are further exacerbated
iteratively. We find it is useful to add the original behavior regularization,

maxl; p [anm, [Q (s, )] — TADy (11, (5) I () — T(1 = ) Dyt (70, (5) Il ()]

Ensembles of Reference Policy. One limitation of CPI lies in the potential for a negligible
difference between the learning policy and the reference policy, due to the limited gradient
steps when optimizing. To improve the efficiency of policy improvement, we explore the idea
of using an ensembles of reference policies. In particular, we apply two policies with
independently initialized parameters w! and w?. Let Q41 and Q42 be the value functions of
these two policies respectively. When updating the parameters ' for i € {1,2}, we choose
the current best policy as the reference policy, where the superiority is decided according to
the current value estimate. We call this algorithm Conservative Policy iteration with
Reference Ensembles (CPI-RE).

Optimality in the Tabular Setting

We use an inferior behavior policy to collect 10k transitions, of which the action probability is
{up:0.1, down:0.4, right:0.1, left:0.4} at every state in the 7 * 7 grid environment. For the
FourRoom environment, we use three types of behavior policy to collect data: (1) Expert
dataset: collect 10k transitions with the optimal policy; (2) Random dataset: collect 10k
transitions with a random restart and equal probability of taking each action; (3) Missing-
Action dataset: remove all down actions in transitions of the upper-left room from the Mixed
dataset. Although some behavior policies are suboptimal, the optimal path is ensured to exist
in the offline data, in which case a clear algorithm should still be able to identify the optimal
path.
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Results on Continuous Control Problems
Dataset \ DT TD3+BC cQL QL POR EDAC InAC STR D-QL CcpP1 CPI-RE
halfcheetah-random 23 11.0 313 137 29.0 284 19.6 20.6 220 297411 30.7+0.4
hopper-random 54 85 a3 84 120 253 324 313 183 295437 304129
waker2d-random 22 16 54 59 63 16.6 6.3 4.7 55 59+1.7 5.5+0.9
halfcheetah-medium 426 483 469 474 48.8 65.9 483 51.8 515 644+13 659+1.6
hopper-medium 67.6 593 61.9 663 98.2 101.6 60.3 101.3 96.6 98.5+3.0 97.9+4.4
waker2d-medium 74.0 83.7 79.5 783 81.1 92.5 82.7 859 873 85.8+0.8 86.3+1.0
halfcheetah-medium-replay 36.6 4.6 453 442 435 613 443 475 483  54.6+13 559+1.5
hopper-medium-replay 82.7 60.9 863 94.7 98.9 101.0 92.1 100.0 1020 101.7+1.6 103.2+1.4
waker2d-medium-replay 66.6 81.8 76.8 739 76.6 87.1 69.8 85.7 98.0 91.8+29 93.8+22
halfcheetah-medium-expert 86.8 9.7 95.0 86.7 94.7 106.3 83.5 94.9 972 94.7+1.1 95.6+0.9
hopper-medium-expert 107.6 98.0 96.9 915 90.0 1107 938 1119 1123 1064443 110.1+4.1
waker2d-medium-expert 108.1 110.1 109.1 109.6 109.1 1147 109.0 110.2 1112 1109404 111.2+0.5
halfcheetah-expert 877 96.7 973 949 932  106.8 93.6 952 963 965402 974104
hopper-expert 94.2 107.8 106.5 108.8 1104 110.1 1034 1112 1026 1122405 112.3+0.5
walker2d-expert 108.3 1102 109.3 109.7 1029 1151 110.6 110.1 1095 110.6+0.1 111.2+0.2
Gym-MuJoCo Total | 9726 10132 10528 10340 10947 12434 1049.7 11622 1158.6 1193.2 1207.4
antmaze-umaze 59.2 78.6 74.0 875 76.8 16.7 84.8 93.6 96.0 98.8+1.1 99.240.5
antmaze-umaze-diverse 53.0 714 84.0 622 64.8 0.0 824 774 84.0 88.6+5.7 92.6+10.0
antmaze-medium-play 0.0 3.0 61.2 712 872 0.0 - 82.6 79.8 824+58 84.8+5.0
antmaze-medium-diverse 0.0 10.6 537 70.0 83 0.0 87.0 820 804489 80.6+11.3
antmaze-large-play 0.0 0.0 15.8 39.6 244 0.0 428 49.0 20.6+16.3 33.6+8.1
antmaze-large-diverse 0.0 0.2 149 475 59.2 0.0 46.8 617 452469 48.0+6.2
Antmaze Total | 122 163.8 3036 3780 387.6 16.7 - 4302 4525 416.0 438.8
pen-human 739 -1.9 352 715 769 52.1 523 75.7 80.1+16.9 87.0+253
pen-cloned 67.3 9.6 2712 373 67.6 68.2 -8.0 60.8 71.8+35.2 70.7+15.8
Adroit Total | 1412 17 624 108.8 1445 120.3 443 136.5 1519 157.7
Total | 1226.0 11847 14188 15208 1626.8 1380.4 - - 17476 1761.2 1803.9
Runtime (s/epoch) 74 - 19.6 39.8 85 19.1
GPU Memory (GB) 14 19 15 14 14

Online Fine-tuning
The distinctive feature of CPI lies in its
policy iteration training, which makes it
particularly well-suited for the online fine-
tuning process. In an online setting, as
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exploration during the training process.
To achieve this, in the online training process, the weight of Dy (1, (s) Il (s))
remains constant, while the weight of Dy (1, (s) Il Tp(s)) decreases exponentially,
eventually reducing to 0.1.
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