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Abstract
One of the fundamental challenges for offline reinforcement learning (RL)
is ensuring robustness to data distribution. Whether the data originates
from a near-optimal policy or not, we anticipate that an algorithm should
demonstrate its ability to learn an effective control policy that seamlessly
aligns with the inherent distribution of offline data. Unfortunately, behavior
regularization, a simple yet effective offline RL algorithm, tends to struggle
in this regard. In this paper, we propose a new algorithm that substantially
enhances behavior-regularization based on conservative policy iteration.
Our key observation is that by iteratively refining the reference policy used
for behavior regularization, conservative policy update guarantees
gradually improvement, while also implicitly avoiding querying out-of-
sample actions to prevent catastrophic learning failures. We prove that in
the tabular setting this algorithm is capable of learning the optimal policy
covered by the offline dataset, commonly referred to as the in-sample
optimal policy. We then explore several implementation details of the
algorithm when function approximations are applied. The resulting
algorithm is easy to implement, requiring only a few lines of code
modification to existing methods. Experimental results on the D4RL
benchmark indicate that our method outperforms previous state-of-the-art
baselines in most tasks, clearly demonstrate its superiority over behavior
regularization.
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Convergence of CPI
We consider the tabular setting with finite state and action space. In this setting, CPI
converges to the optimal policy that are well-covered by the dataset, commonly referred
to as the in-sample optimal policy.
Theorem 1.We consider tabular MDPs with finite 𝒮 and𝒜. Let 𝜋𝑡 be the produced policy
of CPI at iteration 𝑡. There exists a parameter 𝜏 > 0 such that for any 𝑠 ∈ 𝒮
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Optimality in the Tabular Setting 

Let 𝜏 > 0, the conservative policy optimization (CPO) update the policy for any
𝑠 ∈ 𝒮 with the following policy optimization problem

max
𝜋
𝔼𝑎∼𝜋 𝑄𝜋(𝑠, 𝑎) − 𝜏𝐷KL(𝜋(𝑠) ∥ 𝜋(𝑠)),

which implicitly guarantees policy improvement constrained on the support of the
reference policy 𝜋. By extending this key observation in an iteratively manner, we
obtain the following Conservative Policy Iteration (CPI) algorithm for offline RL. It
starts with the behavior policy 𝜋0 = 𝜋𝒟. Then in each iteration 𝑡 = 0,1,2,…, the
following computations are done:

• Policy evaluation: compute 𝑄𝜋𝑡 and;

• Policy improvement: ∀𝑠 ∈ 𝒮,𝜋𝑡+1 = argmax-𝔼𝑎∼𝜋 𝑄𝜋𝑡(𝑠, 𝑎) − 𝜏𝐷KL 𝜋 ∥ 𝜋𝑡 .

In this approach, the algorithm commences with the behavior policy and
proceeds to iteratively refine the reference policy used for behavior
regularization. Thanks to the conservative policy update, CPI ensures policy
improvement while mitigating the risk of querying any OOD actions that could
potentially introduce instability to the learning process.

Practical Implementations 
CPI consists of two steps at each iteration. The first step involves policy evaluation, which is
carried out using standard TD learning: we learn the critic by
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where Qθ is a target network. We also apply the double-Q trick to stabilize training. The policy
improvement step requires more careful algorithmic design. Practical implementations often
rely on a limited number of gradient descent steps for optimizing, thus could suffer from our-
of-support samples. This leads to policy optimization errors which are further exacerbated
iteratively. We find it is useful to add the original behavior regularization,

max
𝜔′
𝔼𝑠∼𝒟 H𝔼𝑎∼𝜋𝜔′ 𝑄𝜃(𝑠, 𝑎) − 𝜏𝜆𝐷KL 𝜋𝜔(𝑠) ∥ 𝜋(𝑠) − ]𝜏(1− 𝜆)𝐷KL 𝜋𝜔(𝑠) ∥ 𝜋𝒟(𝑠)

Ensembles of Reference Policy. One limitation of CPI lies in the potential for a negligible
difference between the learning policy and the reference policy, due to the limited gradient
steps when optimizing. To improve the efficiency of policy improvement, we explore the idea
of using an ensembles of reference policies. In particular, we apply two policies with
independently initialized parameters 𝜔1 and 𝜔2. Let 𝑄𝜃1 and 𝑄𝜃2 be the value functions of
these two policies respectively. When updating the parameters 𝜔𝑖 for 𝑖 ∈ {1,2}, we choose
the current best policy as the reference policy, where the superiority is decided according to
the current value estimate. We call this algorithm Conservative Policy iteration with
Reference Ensembles (CPI-RE).

We use an inferior behavior policy to collect 10k transitions, of which the action probability is
{up:0.1, down:0.4, right:0.1, left:0.4} at every state in the 7 ∗ 7 grid environment. For the
FourRoom environment, we use three types of behavior policy to collect data: (1) Expert
dataset: collect 10k transitions with the optimal policy; (2) Random dataset: collect 10k
transitions with a random restart and equal probability of taking each action; (3) Missing-
Action dataset: remove all down actions in transitions of the upper-left room from the Mixed
dataset. Although some behavior policies are suboptimal, the optimal path is ensured to exist
in the offline data, in which case a clear algorithm should still be able to identify the optimal
path.

Results on Continuous Control Problems 

Online Fine-tuning 
The distinctive feature of CPI lies in its
policy iteration training, which makes it
particularly well-suited for the online fine-
tuning process. In an online setting, as
the agent can interact with the
environment, there is a need to
progressively enhance the level of
exploration during the training process.
To achieve this, in the online training process, the weight of DKL πω(s) ∥ π(s)
remains constant, while the weight of DKL πω(s) ∥ π𝒟(s) decreases exponentially,
eventually reducing to 0.1.
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