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o Bayesian causal discovery methods have
parametric assumptions on the SCM and noise

o The only non-parametric Bayesian approach
assume that the causal graph is a tree
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o Causal sufficiency

o Access to observational distribution

» Task:
o Given the UCCG G and N interventional samples, return a DAG D
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Theoretical Analysis

* Asymptotic results:

Lemma 2. (Posterior Consistency) Consider an intervention target S; € S and the corresponding
true cutting-edge configuration C*(S;). As the number of samples ms, — o0 in Datag,s,) =
{1y Vi o o » Vimg, }, the posterior of the true cutting-edge configuration P(C*(S;) | Datag,(s,))
converges to 1 with high probability. More precisely, we have the following high probability lower
bound on the posterior probability of the true cutting-edge configuration.

1

1+ a;exp (O(msi) — a30(4/ms; In %))

Where vy and ao are constants depending on the prior and the problem instance. Thus, for any small
choice of the probability o, with a sufficiently large number of samples ms,, the posterior of the true
cutting-edge configuration P(C*(S;) | Datag,s,)), converges to 1 with a probability at least 1 — 0.

w.p. at least 1 — 0

P(C*(S;) | Datagy(s,)) > 1 —
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Theoretical Analysis

* Non-asymptotic results:

Theorem 3. Given that the Assumptionl| hold, consider an intervention target S; € S such that
1S;| < k and the corresponding true cutting edge configuration C*(S;). If the number of samples
ms; in Datag,s,) = {V1,V2,.... Vi, } satisfies the following:

26> | 20HVd 2 2Kn(l—4)(1 —p*)
(DSI‘ )2 (S DS,L- p*,.\/

Mg, =

where p* is the prior assigned to the true cutting-edge configuration C*(S;), then we have
P(C*(S;) | Datagg(s;)) = 1 — v with a probability at least 1 — 0.
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Experimental Results
* Baselines:

o Random
o DCT
o Adaptivity-sensitive search
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Conclusion

* We develop the sample-efficient Bayesian learning causal discovery algorithm
without parametric assumptions on the SCM

* We show in theory that our proposed algorithm will learn the true causal graph with a
high probability given enough interventional samples and the convergence rate

» We demonstrate the performance of our algorithm with simulated experiments and
show how to modify the algorithm to answer general causal queries with case study
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