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Global convolution sequence models:

Effective general-purpose sequence models

* FlexConv, S4, S4D, SGConv, Hyena

Efficient computation via FFTs

e FlashFFTConv

X Difficult to train
* Explicitly parameterized kernels are prone to overfitting

* Implicit kernel parameterization, regularization, composition of sub kernels

X Hand-crafted inductive biases

* Fixed kernel decay
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MRConv: Multi-Resolution Convolutions
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Multi-Resolution Convolutions

* Introduces learnable kernel decay

Causal Structural Reparameterization

» Improves training by introducing training-time non-linearity

Low-Rank Kernel Parameterizations

* Explicitly parameterized kernels are prone to overfitting
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Multi-Resolution Convolutions

We define multi-resolution convolutions as the weighted sum of normalized
convolutions of different length

y = OéoBNo(ko * u) + OclBNl (k1 * u) —+ -+ aNleNNfl(kN,1 * u) (1)

= At each resolution the kernel k; is of length 21,
= Weighted sum of multi-resolution implicitly learns kernel decay

= BatchNorm required for learning weighted sum due to impact of kernel size on
output statistics
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Causal Structural Reparameterization

We can merge multiple causal convolutions into one as,

Yy = i(u*kn) = (u* <ikn>> = (u*krep),

n=0

Sum of convolutions Convolution of sum

But what about BatchNorm?

X Non-linear during training — Cannot Merge

y= C%()BNo(ko * u) + Oé1BN1(k1 * u) 4+ 4+ OéN71BNN71(kN,1 * u)

Sum of convolutions Sum of convolutions Sum of convolutions

Linear during inference — Merge

¥y = u* (wBNo(ko) + c1BNi (k1) + - - - + an—1BNy_1(kn_1))

Convolution of sum

(2)

3

4
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Low-Rank Kernel Parameterizations

ko

]21 ]22 -
1 ¥
E ”““I I”” “hl ||““H””|' ||‘| “h '”‘“ r A
i

Z M i J M, [,

Dilated
P
pamrs—

1. Dilated Kernels  y[t] = (u * kaiatea)[t] = S5 k[7Jult — p7]
2. Fourier Kernels Ky ier[t] = IFFT[ZeroPad(lA(,L —m)])[¢]
3. Sparse Kernels  kyparse[t] = SeeT - ke
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Experiments: Long Range Arena

MRConv is competitive with other sub-quadratic complexity models, including SSMs
and linear-time transformers.

Model ListOps Text Retrieval Image Pathfinder Path-X Avg.
(Input length) (2,048)  (4,096)  (4,000)  (1,024) (1,024) (16,384)
Transformer 36.37 64.27 57.46 42.44 71.40 53.66
Linear-Time Transformers:

MEGA-Chunk 58.76 90.19 90.97 85.80 94.41 93.81 85.66
State Space Models:

S4D-LegS 60.47 86.18 89.46 88.19 93.06 91.95 84.89
S4-LegS 59.60 86.82 90.90 88.65 94.20 96.35 86.09
Liquid-S4 62.75 89.02 91.20 89.50 94.8 96.66 87.32
S5 62.15 89.31 91.40 88.00 95.33 98.58 87.46
Convolutional Models:

CCNN 43.60 84.08 - 88.90 91.51 -
Long Conv 62.2 89.6 91.3 87.0 93.2 96.0 86.6
SGConv 61.45 89.20 91.11 87.97 95.46 97.83 87.17
MRConv 62.40 89.26 91.44 90.37 95.55 97.82 87.81
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Experiments: ImageNet Classification

Using optimized CUDA kernels for 1D FFT convolutions, we close the gap between
theoretical and empirical throughput.
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Summary

Thank you for listening!
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More in our paper:
= More experiments
= More ablations

= More implementation details

(c) Inference
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